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Abstract

Two new recursive approaches have been developed to provide accurate estimates for pos-

terior moments of both parameters and system states while making use of the generalized

Polynomial Chaos (gPC) framework for uncertainty propagation. The main idea of the gen-

eralized polynomial chaos method is to expand random state and input parameter variables

involved in a stochastic differential/difference equation in a polynomial expansion. These

polynomials are associated with the prior pdf for the input parameters. Later, Galerkin pro-

jection is used to obtain deterministic system of equations for the expansion coefficients. The

first proposed approach (gPC-Bayes) provides means to update prior expansion coefficients

by constraining the polynomial chaos expansion to satisfy the desired number of posterior

moment constraints derived from the Bayes’ rule. The second proposed approach makes

use of the minimum variance formulation to update polynomial chaos expansion coefficients.

The main advantage of proposed methods is that they not only provide point estimate for

the state and parameters but they also provide statistical confidence bounds associated with

these estimates. Numerical experiments involving four benchmark problems are considered

to illustrate the effectiveness of the proposed ideas.

Keywords:

Parameter Estimation, State Estimation, Inverse Problem, Generalized Polynomial Chaos,

Bayes’ Theorem, Method of Moments
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Chapter 1

Introduction

Numerous fields of science and engineering require the study of the relevant stochastic dy-

namic system since mathematical models used to represent physical processes or engineering

systems have errors and uncertainties associated with them. The error inherent in any

mathematical model prediction can be due to the result of model truncation, errors in model

parameters, errors in the inputs to the system and errors in initial conditions. These un-

certainties cause overall accuracy of computations to degrade as the model states evolve.

To alleviate this problem, assimilating the available observation data to correct and refine

the model forecast in order to reduce the associated uncertainties is a logical improvement

over purely model-based prediction. However, sensor model and data inaccuracies can lead

to imprecise measurement data which could lead to inaccurate estimates. Hence, the op-

timal solution should be a weighted mixture of model forecast and observation data. This

approach had its birth with the development of the Kalman Filter [1].

Kalman Filter (KF) is the optimal Bayesian estimator for linear systems with initial

condition and measurement errors assumed to be Gaussian. However, the performance of

the Kalman filter can deteriorate appreciably due to model parameter uncertainty [2, 3,

4]. The sensitivity of the KF to parametric modeling errors has led to the development

of several robust filtering approaches; robust in the sense that they attempt to limit, in

certain ways, the effect of parameter uncertainties on the overall filter performance. Various

approaches to state-space estimation in this regard [5] have focused on H∞ filtering [6, 7],

set-valued estimation [8, 9], and guaranteed cost designs [8, 10]. Alternatively, when the

model parameters are uncertain, the estimation is carried out through the simultaneous
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estimation of states and parameters (also viewed as states), which results in a nonlinear

filtering problem even for otherwise linear systems [11]. Methods like the extended Kalman

Filter (EKF) [2] or Unscented Kalman Filter (UKF) [12] have been used to estimate model

parameters along with state estimates. In the EKF approach, the original nonlinear model is

converted to a linearized model by using the jacobian of the nonlinear model about current

state and parameter estimates. A major drawback of the EKF approach is that it results in

poor performance when the state transition or observation models are highly nonlinear or

even if state estimates are highly sensitive to parametric errors in case of a linear system.

Unscented Kalman Filter (UKF) is one of the approaches which can be used to overcome this

deficiency. UKF performs the estimation process by making use of a deterministic sampling

technique known as the unscented transformation. Unscented transformation provides a set

of sample points around the mean (known as σ-points) which are propagated through the

nonlinear functions, from which the mean and covariance of the estimate are then recovered.

This process results in a filter which captures the true mean and covariance better than the

EKF.

Although both the EKF and UKF based filters are very popular for simultaneous state

and parameter estimation problems, both methods are based upon very restrictive Gaussian

error assumption for both parameter and state uncertainty. Clearly, the Gaussian assump-

tion can work well for moderately nonlinear systems but it might not be appropriate at all

for certain problems based upon the physical model. For example, Gaussian distribution

is not an ideal distribution to represent errors in the spring coefficient which is a posi-

tive quantity. This necessitates the need for filters which can incorporate the knowledge

about non-Gaussian uncertainty. Various researches have endeavored to exploit knowledge

of statistics, dynamic systems and numerical analysis to develop nonlinear filtering tech-

niques [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] which cater to the various classes of state

and parameter estimation problems. For low-order nonlinear systems, the Particle Filter

(PF) [22, 23] has been gaining increasing attention. However, Daum in his seminal work[24]

discusses that various factors like volume of state space in which conditional pdf is non-

vanishing, rate of decay of the conditional pdf in state space, stationarity of the problem,

analytical structure of the problem (e.g. linear dynamics, bilinear dynamics, unimodal pdf,

etc.), effective dimensionality of the problem, etc. strongly affect the computational com-

plexity and performance of the particle filter and argue that an efficient approach for general
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nonlinear filtering should be based upon continuous probability density function (pdf) as-

sumption [24].

For linear systems with parametric uncertainties, the multiple-model estimation [11]

methods have been very popular. This method assumes the uncertain parameters belong to

a discrete set. The uncertain parameter vector is quantized to a finite number of grid points

with known prior probabilities. The state conditional mean and covariance are propagated

for each model corresponding to a grid point using KF equations and the first two moments

of system states are computed by a weighted average of the moments corresponding to var-

ious prior models. Furthermore, the prior probability values for parameter samples are also

updated by making use of the Bayes’ theorem. Although this method works well for linear

systems and provides a mean estimate for both state and parameter, the performance of

this method is strongly affected by number of parameter samples like any sampling algo-

rithm such as PF [25]. A detailed review on classical approaches applied in online parameter

estimation can be found in [26].

1.1 Polynomial Chaos Based Estimation

All the methods mentioned in previous section have some restrictions for application. As

mentioned before, all the Kalman based filters, like KF, EKF, and UKF have a restric-

tive assumption about the distribution of the parameters and states. Also, application of

PF encounters expensive computational cost for large number of samples applied during

the estimation process. One of the proposed approaches to overcome these restrictions is

generalized Polynomial Chaos (gPC) based estimation methods.

gPC is an extension of the polynomial chaos (PC) idea of Wiener [27]. The main princi-

ple of the polynomial chaos approach is to expand random variables using polynomial basis

functions that are orthogonal with respect to the pdf of the parameters (Hermite polyno-

mials for normally distributed parameters, Legendre for uniformly distribution, etc.), and

transform stochastic equations into deterministic equations in higher dimensional projection

space using Galerkin collocation. Xiu et al. [28] generalized the result of Cameron-Martin

to various continuous and discrete distributions using orthogonal polynomials from the so

called Askey-scheme [29]. This is popularly known as the gPC framework. The gPC based

methods have emerged as powerful tools to propagate time-invariant parametric uncertainty
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through an otherwise deterministic system of equations, to predict a distribution of out-

puts [27, 28, 30]. The gPC method can efficiently characterize the state uncertainty due to

time-invariant random parameters having arbitrary probability distributions.

gPC has been used in different ways for parameter estimation problem also popular in

literature as inverse problem. Blanchard et al. [31] combined gPC method with Extended

Kalman Filter (EKF). In the framework of this approach, after application of gPC in finding

the solution of forward problem, an (suboptimal) EKF is used to recalculate the polynomial

chaos expansions for the uncertain states and the uncertain parameters using the Galerkin

projection. In another similar work, a recursive approach which constructs a set of efficient

algorithms based on combination of the gPC expansion and the Ensemble Kalman Filter

(EnKF) has been proposed [32]. The key steps in the proposed approach involve solving

the system of stochastic state equations via the gPC-based numerical methods (stochastic

Galerkin or stochastic collocation) to gain efficiency, then sampling the gPC approximation

of the stochastic solution with an arbitrarily large number of samples in order to reduce sam-

pling errors. The drawback of this work is that like all Kalman based estimation approaches,

they assume distribution of parameter of interest to be Gaussian.

The gPC approach in conjunction with maximum likelihood framework has been used

successfully to find the estimates for parameters, but not states. Pence et al. [33] proposed

a recursive algorithm based on gPC approach and maximum likelihood estimation to find

the value of static parameters of linear or nonlinear stochastic dynamic systems, given the

system’s inputs. In this method, the gPC approach is used to propagate the uncertainty

of the system through the forward dynamic model and a maximum likelihood function is

composed based on measurement data and the gPC propagation of the system. Finally,

the point estimate of parameter of interest at every time step is obtained by finding the

corresponding realization of random variable which maximizes the likelihood function. The

paper suggests two different approaches to solve the maximum likelihood problem at each

time step to find the update of random variable, which are Gradient based optimization or

random search approach. The main drawback of this approach is that it provides a point

estimate rather than the posterior density function for parameters.

Recently, the gPC approach has also been used in a Bayesian framework to provide

estimates for parameters in the context of solving inverse problems. Marzouk et al. [34]

demonstrated an approach to evaluate posterior distribution of a parameter of interest by
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combination of the gPC approach, Bayesian framework and Markov Chain Monte Carlo

(MCMC) method. In this approach, the gPC-based stochastic Galerkin method is used to

propagate prior uncertainty through the forward model. Then, application of gPC approx-

imation of forward solution in evaluation of prior and the likelihood function in Bayesian

framework leads to a posterior distribution of parameters of interest. Finally, MCMC sam-

pling technique has been used to explore the obtained posterior distribution. In another

research, Marzouk et al. [35] used a gPC stochastic collocation approach to construct pos-

terior surrogates for efficient Bayesian inference in inverse problems, instead of the Galerkin

method. This work also contains a rigorous error analysis of the gPC Bayesian inverse

scheme. Convergence of the approximate posterior distribution to the true posterior distri-

bution is established and its asymptotic convergence rate is obtained. Please note that both

of these researches have been implemented as batch estimation approach.

gPC approach has also been used in Bayesian framework to find a point estimate of

parameters of interest. Blanchard et al. [36] proposed an offline computational approach for

parameter identification based on the application of the generalized polynomial chaos theory

which leads to a point estimation. In the approach presented in this paper, gPC expansion

theory is used to propagate the solution of the system between the measurement updates.

Then, the point estimate of parameter of interest is obtained by maximizing the posterior

probability density function which is expressed in terms of prior probability and likelihood

function, by using Bayes’ theorem.

Recently, the gPC expansion has also been used in Maximum Entropy framework for

recursive estimation purposes. Dutta et al. [37], developed a nonlinear estimation algorithm

based on the combination of gPC expansion theory, Maximum Entropy principle, and higher

order moments updates. In this research, polynomial chaos theory is used to predict the

evolution of uncertainty in the nonlinear random process. Then, higher order moment up-

dates are used to estimate the posterior moments of the random process using a linear gain.

Finally, posterior probability density function is approximated by a mixture of Gaussian

kernels by using the maximum entropy principle, subjected to constraints defined by the

posterior moments. Also, the basis functions applied in gPC expansions are reconstructed

according to the obtained pdf, after each update. However similar to [4], they considered just

state estimation in the presence of parametric or initial condition uncertainty. Furthermore,

the approximation by Gaussian kernels require special tuning which can be cumbersome for
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many real problems.

1.2 Present Work

In summary, the gPC expansion method has been successfully used to find point estimates

by making use of maximum likelihood or maximum posteriori framework. However, most

of these methods just provides a point estimate rather than a complete description of the

posterior pdf for both state and parameter. Furthermore, it should be noted that all these

methods are either applied to state or parameter estimation problem and also most of them

are being applied as an offline estimation approach.

This thesis presents two new recursive approaches to provide estimates for posterior mo-

ments of both parameters and system states by making use of the gPC expansion and the

Bayesian framework. The main advantage of proposed methods is that they not only pro-

vide point estimate for the state and parameters but they also provide statistical confidence

bounds associated with these estimates described in terms of the posterior moments. Fur-

thermore, these moments have been applied in the construction of posterior coefficients of

the gPC expansion for both states and parameters.

The first objective of this approach is to quantify the effect of parametric and initial

conditions uncertainty on the output of the mathematical model. The second objective of

this work is to provide a real-time estimate for system states and parameters, together with

quantitative measures of confidence in that estimate, while taking into account model and

sensor inaccuracies. In addition, it must account for non-Gaussian parametric and initial

condition uncertainty and must be robust in presence of low measurement data frequency.

Finally, regarding its application in real time estimation, it should be computationally afford-

able. In the following chapters, after theoretical development of our approach, we analyze

performance of this method on different problems, especially regarding these requirements.

The remainder of this document is structured as follows: In chapter 2 we briefly review

the generalized polynomial chaos theory and its application to model stochastic differential

equations. The efficiency of gPC theory in quantifying the effect of parametric and initial

conditions uncertainty has been shown by some numerical examples. In chapter 3, we de-

scribe the problem statement and formulation of estimation process by using Bayes rule and

minimum variance estimator. Also, detailed formulations of measurement update process
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are developed. Next, we illustrate the efficacy of this approach by some numerical examples

in chapter 4. Finally, conclusion and discussion of the results are mentioned in chapter 5.
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Chapter 2

Generalized Polynomial Chaos

This chapter presents the mathematical details for the polynomial chaos methodology to

examine the effects of input parameter uncertainty on the forward model outcome.

A mechanism to represent the uncertainty is necessary before the model data and the

sensed data can be integrated in an efficient and consistent manner. Probabilistic means of

representing uncertainties has been explored extensively and provides the greatest wealth

of knowledge which will be exploited in this work. In the standard dynamic model, the

state variables are assumed to be a deterministic quantity. Instead of solving for the point

estimates for state variables, we are interested in probability distribution for their values

due to uncertainty in input parameters, initial conditions and random input. Thus, the

system states are assumed to be a random vector, x(t), whose time evolution is given by the

following stochastic differential equation:

ẋ(t,Θ) = f(t,Θ,x,u), x(t0) = x0 (2.1)

In this equation, Θ represents uncertain but time-invariant system parameters and u rep-

resents deterministic forcing terms. The nominal initial state estimates are given by x0,

which may also be uncertain. The total uncertainty associated with the state vector x(tk)

is characterized by the probability distribution function (pdf) p(tk,xk,Θ). A key idea of

this work is to replace the time evolution of state vector xk by the time evolution of the pdf

p(tk,xk,Θ) as illustrated in Fig. 2.1. By computing full probability density functions, we can

better monitor the space-time evolution of uncertainty, represent multi-modal distributions,

incorporate complex prior models, and exploit Bayesian belief propagation.

Several approximate techniques exist in the literature to approximate the state pdf evolu-
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Figure 2.1: State and pdf transition

tion [38, 39], the most popular being Monte Carlo (MC) methods [40], Gaussian closure [41],

Equivalent Linearization [42], and Stochastic Averaging [43, 44]. In addition, a Gaussian

Process approach to solve nonlinear stochastic differential equations has been proposed in

Ref. [45]. Here the Kullback-Leibler divergence [46] between the true posterior and the Gaus-

sian approximation is minimized after approximating the first two moments of the posterior,

by local linearization. All of these algorithms except MC methods are similar in several

respects, and are suitable only for linear or moderately nonlinear systems, because the effect

of higher order terms can lead to significant errors. Monte Carlo methods require extensive

computational resources and effort, and become increasingly infeasible for high-dimensional

dynamic systems [24].

The next section discusses the generalized Polynomial Chaos (gPC) method for solving

the time evolution of state pdf for systems that include initial condition and parametric

uncertainty.

13



2.1 Generalized Polynomial Chaos, Theory and Method-

ology

The propagation of uncertainty due to time-invariant but uncertain input parameters can

be approximated by a generalization of polynomial chaos (gPC). gPC is an extension of

the homogenous chaos idea of Wiener [47] and involves a separation of random variables

from deterministic ones in the solution algorithm for a stochastic differential equation. The

random variables are expanded in a polynomial expansion. These polynomials are associated

with the assumed pdf for the input variables (Hermite polynomials for normally distributed

parameters, Legendre for uniformly distribution, etc [48]). Galerkin projection is used to

generate a system of deterministic differential equations for the expansion coefficients.

2.1.1 Linear Systems

To describe the gPC process in detail, let us first consider a generic first order stochastic

linear system:

ẋ(t,Θ) = A(Θ)x(t,Θ) + B(Θ)u(t) (2.2)

where A ∈ Rn×n and B ∈ Rn×p. u ∈ Rp×1 is vector of input signals and Θ ∈ Rr is a vector

of uncertain system parameters which is a function of the random variable ξ with known

probability distribution function (pdf) p(ξ). It is assumed that the uncertain state vector

x(t,Θ) and system parameters Aij and Bij can be written as a linear combination of basis

functions, φk(ξ), which span the stochastic space of random variable ξ:

xi(t, ξ) =
N∑
k=0

xik(t)φk(ξ) = xTi (t)Φ(ξ) (2.3)

Aij(ξ) =
N∑
k=0

aijkφk(ξ) = aTijΦ(ξ) (2.4)

Bij(ξ) =
N∑
k=0

bijkφk(ξ) = bTijΦ(ξ) (2.5)

where Φ(.) ∈ RN is a vector of polynomial basis functions orthogonal to the pdf p(ξ) which

can be constructed using the Gram-Schmidt Orthogonalization Process. Table 2.1 repre-

sents different types of polynomial basis functions corresponding to different distributions of

random variable ξ [48].
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The coefficients aijk and bijk are obtained by making use of following normal equations :

aijk =
〈Aij(Θ(ξ)), φk(ξ)〉
〈φk(ξ), φk(ξ)〉 (2.6)

bijk =
〈Bij(Θ(ξ)), φk(ξ)〉
〈φk(ξ), φk(ξ)〉 (2.7)

where 〈u(ξ), v(ξ)〉 =
∫
Rr

u(ξ)v(ξ)p(ξ)dξ represents the inner product induced by pdf p(ξ).

Please note that the total number of terms in gPC expansion (N) is determined by the

chosen highest order of basis polynomials φk(ξ), denoted by l, and the dimension of the

vector of uncertain parameter Θ, which is represented by m:

N =

 l +m

m

 =
(l +m)!

m!l!
(2.8)

Now, substitution of Eq. (2.3), Eq. (2.4) and Eq. (2.5) in Eq. (2.2) leads to:

ei(ξ) =
N∑
k=0

ẋik(t)φk(ξ)−
n∑
j=1

(
N∑
k=0

aijkφk(ξ))(
N∑
k=0

xik(t)φk(ξ))

−
p∑
j=1

(
N∑
k=0

bijkφk(ξ))uj, i = 1, 2, · · · , n (2.9)

Eq. (2.9) represents the error of approximate gPC solution of Eq. (2.2) which contains

n(N + 1) time-varying unknown coefficients xik(t). These unknown coefficients can be ob-

tained by using Galerkin process, i.e., projecting the error of Eq. (2.2) onto space of basis

functions φk(ξ).

Table 2.1: Correspondence of polynomial basis functions with their underlying random vari-

ables ξ

Random Variable ξ basis polynomials φ(.) Support

Gaussian Hermite (−∞,+∞)

Gamma Laguerre [0,+∞]

Beta Jacobi [a, b]

Uniform Legendre [a, b]
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〈ei(C, ξ), φk(ξ)〉 = 0, i = 1, 2, · · · , n, k = 1, 2, · · · , N (2.10)

This leads to following set of n(N + 1) deterministic differential equations :

ẋpc(t) = Axpc(t) + Bu(t) (2.11)

where xpc(t) = {xT1 (T ), xT2 (T ), · · · ,xTn (T )} is a vector of n(N + 1) unknown coefficients,

A ∈ Rn(N+1)×n(N+1) and B ∈ Rn(N+1)×p.

Let P and Tk, for k = 0, 1, 2, · · · , N , denote the inner product matrices of the orthogonal

polynomials defined as follows:

Pij = 〈φi(ξ), φj(ξ)〉, i, j = 0, 1, 2, · · · , N (2.12)

Tkij = 〈φi(ξ), φj(ξ), φk(ξ)〉, i, j = 0, 1, 2, · · · , N (2.13)

Then A and B can be written as an n(N + 1) × n(N + 1) block-diagonal matrix, each

on-diagonal block being an (N + 1) × (N + 1) matrix. The matrix A consists of blocks

Aij ∈ R(N+1)×(N+1):

Aij = AijP, i, j = 1, 2, · · · , n (2.14)

if matrix A is not uncertain, else, it is given by:

Aij(k, :) = aTijTk, i, j = 1, 2, · · · , n (2.15)

The matrix B consists of blocks Bij ∈ R(N+1)×1:

Bij = Pbij i = 1, 2, · · · , n, j = 1, 2, · · · , p (2.16)

Eq. (2.3) along with Eq. (2.11) define the uncertain state vector x(t, ξ) as a function of

random variable ξ and can be used to compute any order moment or cumulant of a function

of uncertain state variable. For example, the first two moments for state vector x(t) can be

written as:

E [xi(t)] = xi1(t), i = 1, · · · , n (2.17)

E [xi(t)xj(t)] =
N∑
k=0

xik(t)xjk(t), i, j = 1, · · · , n (2.18)
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2.1.2 Nonlinear Systems

In this section, we extend the gPC process to propagate the state uncertainty for a generic

nonlinear system given by

ẋ(t,Θ) = f(t,Θ,x,u), x(t0) = x0 (2.19)

where u(t) is the input of dynamic system at time t, x(t,Θ) = [x1(t,Θ), x2(t,Θ), · · · , xn(t,Θ)]T ∈
Rn represents the stochastic system state vector, and uncertain parameter vector Θ =

[θ1,θ2, · · · ,θm]T ∈ Rm is assumed to be time invariant and function of a random vector

ξ = [ξ1, ξ2, · · · , ξm]T ∈ Rm defined by a pdf p(ξ) over the support Ω. Please note that

f(t,Θ,x,u) can be a nonlinear function in general.

Once again the gPC expansion for the state vector x and uncertain parameter Θ can be

written as:

xi(t,Θ) =
N∑
k=0

xik(t)φk(ξ) = xTi (t)Φ(ξ)⇒ x(t, ξ) = Xpc(t)Φ(ξ) (2.20)

θi(ξ) =
N∑
k=0

θikφk(ξ) = θTi Φ(ξ)⇒ Θ(t, ξ) = ΘpcΦ(ξ) (2.21)

where, Xpc and Θpc are matrices composed of coefficients of gPC expansion for state x and

parameter Θ, respectively. Similar to the linear case, coefficients θik are obtained by making

use of following normal equations :

θik =
〈θi(ξ), φk(ξ)〉
〈φk(ξ), φk(ξ)〉 (2.22)

Now, substitution of Eq. (2.20) and Eq. (2.21) into Eq. (2.19), leads to:

ei(Xpc, ξ) =
N∑
k=0

ẋik(t)φk(ξ)− fi(t,Xpc(t)Φ(ξ),ΘpcΦ(ξ),u), i = 1, 2, · · · , n (2.23)

From Eq. (2.10), n(N + 1) time-varying coefficients xik can be obtained using the Galerkin

process, i.e. projecting the error captured in Eq. (2.23) onto space of basis functions φk(ξ).

For polynomial or rational state nonlinearity, the Galerkin process will lead to a set of

n(N+1) nonlinear deterministic differential equations. For non-polynomial nonlinearity such

as transcendental or exponential functions, difficulties may arise during the computation of

projection integrals of Eq. (2.10). To overcome this, in the nonlinear case polynomial chaos

quadrature (PCQ) technique will be used.
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2.2 Polynomial Chaos Quadrature

To manage the non-polynomial nonlinearity difficulties in polynomial chaos integration, Dal-

bey et al. have proposed a formulation [49] known as Polynomial Chaos Quadrature (PCQ).

PCQ replaces the projection step of the gPC with numerical quadrature. The resulting

method can be viewed as a MC-like evaluation of system equations, but with sample points

selected by quadrature rules. To illustrate this, consider Eq. (2.19), which by substitution

of Eq. (2.20) and Eq. (2.21) can be written as:

N∑
k=0

ẋik(t)φk(ξ)− fi(t,Xpc(t)Φ(ξ),ΘpcΦ(ξ),u) = 0, i = 1, · · · , n (2.24)

The projection step of PC yields:

N∑
k=0

〈φk(ξ), φj(ξ)〉ẋik−〈fi(t,Xpc(t)Φ(ξ),ΘpcΦ(ξ),u), φj(ξ)〉 = 0 i = 1, · · · , n, j = 0, · · · , N

(2.25)

In the case which f(t,x,Θ,u) is linear, it is possible to evaluate projection integrals of

Eq. (2.25) analytically. More generally, the starting point of PCQ methodology is to re-

place the exact integration with respect to ξ by numerical integration. The familiar Gauss

quadrature method is a suitable choice for most cases. This yields:

〈φi(ξ), φj(ξ)〉 =

∫
φi(ξ)φj(ξ)p(ξ)dξ '

M∑
q=1

wqφi(ξq)φj(ξq) (2.26)

〈φi(ξ), φj(ξ)φk(ξ)〉 =

∫
φi(ξ)φj(ξ)φk(ξ)p(ξ)dξ '

M∑
q=1

wqφi(ξq)φj(ξq)φk(ξq)

(2.27)

〈fi(t,Xpc(t)Φ(ξ),ΘpcΦ(ξ),u), φj(ξ)〉 =

∫
fi(t,Xpc(t)Φ(ξ),ΘpcΦ(ξ),u)φj(ξ)p(ξ)dξ

'
M∑
q=1

wqfi(t,Xpc(t)Φ(ξq),ΘpcΦ(ξq),u)φj(ξq) (2.28)

where M is the number of quadrature points used. Substitution of aforementioned approxi-

mation of stochastic integral in Eq. (2.25) and interchanging summation and differentiation

leads to

d

dt

M∑
q=1

N∑
k=0

wqφj(ξq)φk(ξq)xik −
M∑
q=1

wqfi(t,Xpc(t)Φ(ξq),ΘpcΦ(ξq),u)φj(ξq) = 0 (2.29)
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which can be simplified as:

d

dt

M∑
q=1

φj(ξq)xi(t, ξq)wq −
M∑
q=1

wqfi(t,Xpc(t)Φ(ξq),ΘpcΦ(ξq),u)φj(ξq) = 0 (2.30)

Integrating with respect to time t yields:

M∑
q=1

(xi(t, ξq)− xi(t0, ξq))φj(ξq)wq −
∫ t

t0

M∑
q=1

wqfi(t,Xpc(t)Φ(ξq),ΘpcΦ(ξq),u)φj(ξq)dt = 0

(2.31)

Interchanging the order of time integration and quadrature summation leads to

M∑
q=1

{
xi(t, ξq)− xi(t0, ξq)−

∫ t

t0

fi(t,Xpc(t)Φ(ξq),ΘpcΦ(ξq),u)dt

}
φj(ξq)wq = 0 i = 1, · · · , n

(2.32)

Note that the integral expression in Eq. (2.32) can be evaluated by an integration of the

model equation with a specific instance of the random variable ξq. Thus the process of

evaluating the statistics on the output of the system reduces to sampling the chosen input

points guided by quadrature method. Finally, the coefficients of the gPC expansion can be

obtained as:

xik(t) =
1

d2
k

M∑
q=1

Xi(t0, t, ξq,u)φk(ξq)wq, k, j = 0, 1, · · · , N, i = 1, 2, · · · , n (2.33)

where

Xi(t0, t, ξq,u) = xi(t0, ξq) +

∫ t

t0

fi(t,Xpc(t)Φ(ξq),ΘpcΦ(ξq),u) (2.34)

d2
k =

∫
Ω

φk(ξ)φk(ξ)p(ξ)dξ (2.35)

Hence, the resulting method can be viewed as a MC-like evaluation of system equations, but

with sample points selected by quadrature rules. PCQ approximates the moment of system

state ẋ = f(t,x,Θ, u) as:

E [xi(t)
N ] =

∫
Ω

(∫ t

t0

ẋidt

)N
dp(ξ)

=

∫
Ω

(
xi(t0, ξ) +

∫ t

t0

fi(t,x,Θ,u)dt

)N
dp(ξ) i = 1, 2, · · · , n (2.36)
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For a fixed value of parameter Θ = Θq, the time integration can be performed using deter-

ministic integration. Integration (by PCQ) over the uncertain inputs determines the state

pdf. This yields moment evaluations

E [xi(t)
N ] =

∑
q

wq [Xi(t0, t, ξq,u)]N i = 1, 2, · · · , n (2.37)

Thus the output moments can be approximated as a weighted sum of the outputs of

simulations run at selected values of the uncertain input parameters (the quadrature points).

The natural choice for these quadrature points is the set of Gaussian quadrature points

which is defined by choosing the points optimally in the sense of maximizing the degree

of polynomial function that integrates exactly. The classic method of Gaussian quadrature

exactly integrates polynomials up to degree 2N + 1 with N + 1 quadrature points. The

tensor product of 1-dimension quadrature points is used to generate quadrature points in

general n-dimension parameter space. As a consequence of this, the number of quadrature

points increases exponentially as number of input parameters increases. It should be noted

that this PCQ approach can still suffer from under-integration error if insufficient number of

samples are used. This necessitates the need for an adaptive or nested quadrature scheme to

successively refine the accuracy by increasing the number of sample points such as Clenshaw-

Curtis quadrature method [50], [51] for numerical integration.

2.3 Examples

After introduction and development of Polynomial Chaos theory, we show performance of

gPC expansion theory for some uncertain dynamic systems by validating gPC solution with

Monte Carlo solution of these systems. Three different examples have been considered for

simulation purposes:

1. First order forced dynamic equation

2. Duffing Oscillator

3. Hovering Helicopter Model
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2.3.1 First Order System

Let us consider a simple single state system:

ẋ+Kx = 2e−t/10sin(2t), x(0) = 0 (2.38)

where K is assumed to be a uniformly distributed parameter over the interval [0.5, 1.5]. The

analytical solution of Eq. (2.38) is:

x(t,K) = e−Kt(
4

(K − 0.1)2 + 4
− 2eKt−t/10[2cos(2t)− (K − 0.1)sin(2t)]

(K − 0.1)2 + 4
) (2.39)

Fig. 2.2 shows convergence of the first three central moments of x at t = 2 sec. as a function

of different number of Monte Carlo runs. From these plots, it is clear that one needs a

minimal of 3 × 104 random samples for the convergence in first three moments of state

x. Now according to the gPC methodology, Legendre polynomials are used for the gPC

expansion of both x(t) and K. Using the procedure outlined in Section 2.1, Eq. (2.38) can

be converted into the following deterministic form:

MẊpc(t) +KXpc =


2e−t/10sin(2t)

0
...

0

 (2.40)

where,

Mi+1,j+1 = 〈φi(ξ), φj(ξ)〉 =
1

2i+ 1
δij, i, j = 0, 1, · · · , N (2.41)

Ki+1,j+1 = 〈φi(ξ), φj(ξ)〉+ 0.5〈φ1(ξ)φi(ξ), φj(ξ)〉, i, j = 0, 1, · · · , N (2.42)

where, δi,j = 1 if i = j and δi,j = 0, otherwise. K can be simplified as the following:

K =


1

2i+1
, i = j

i
(2i+1)(2i+3)

, j = i+ 1

i
(2i−1)(2i+1)

, j = i− 1

As well, the initial condition of Eq. (2.40) is given by

xi(0) = 0 i = 0, · · · , N (2.43)
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Figure 2.2: Convergence of Monte Carlo Solution at t = 2 sec. for Example 1.
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Figure 2.3: First Three Central Moments of x for Example 1.

23



−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06
0

200

400

600

800

1000

1200

1400

1600

x
mc

(t=10)

(a) Monte Carlo

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06
0

500

1000

1500

x
pc

(t=10)

(b) 4th order Polynomial Chaos expansion

Figure 2.4: Histogram of state x at t = 10 sec. for Example 1.

where, N is the number of terms used in the gPC expansion of x. Solution of this system

of ODEs yields the coefficients of gPC expansion of x(t), which can be used in Eq. (2.20) to

construct the solution of Eq. (2.38).

Fig. 2.3 shows the evolution of first three central moments over time for different order

gPC expansion. For comparison sake, we consider 105 MC runs to be the reference truth.

From these plots, it is clear that first two moments are captured with a good accuracy with

second order gPC expansion, i.e., N = 2, however, one needs at least fourth order gPC

expansion to capture first three central moments. Furthermore, Fig. 2.4 shows histogram of

state x at final time t = 10 sec. by using both 105 MC runs and 4th order gPC solution. It

is clear that both the gPC and Monte Carlo methods lead to similar distribution for x at

final time.

Finally, Table 2.2 shows the relative error in approximating first three central moments

using the PCQ framework for x at t = 2 seconds by assuming 105 MC runs to be reference

truth. It should be noted that one needs only 4 quadrature points or model runs according

to the PCQ formulation to capture first three moments with less than 1% error while 103

MC runs results in an order of magnitude higher error when compared against 105 MC runs.

These results clearly show the efficacy of the gPC framework in accurately propagating the

parameter uncertainty through dynamical system.
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Table 2.2: Relative error of moments of state x with respect to 105 Monte Carlo runs at

t = 2sec.

Number of

Quadrature Points
Mean

2nd Central

Moment

3rd Central

Moment

1 9.10% 100% 100%

2 0.0617% 6.0777% 100%

3 0.0300% 0.0472% 5.0230%

4 0.0304% 0.0557% 0.0883%

103 MC Simulations 1.2310% 3.7051% 7.8948%

2.3.2 Duffing Oscillator

As the second example, let us consider the following nonlinear oscillator:

ẍ+ ηẋ+ αx+ βx3 = Uin (2.44)

Eq. (2.44) represents a force input driven duffing oscillator with a cubic spring and a linear

damping. For simulation purposes, we use Uin = sin(3t) as force input function and β = 2,

which is deterministic and α and η are considered to be uniformly distributed uncertain pa-

rameters over the intervals [0.9, 1.4] and [−1.45,−0.95], respectively. Also, initial conditions

are assumed to be:

x(0) = −1, ẋ(0) = −1

The gPC expansion of initial distribution of α, η, x(0) and ẋ(0) can be written as:

x(0, ξ) =
N∑
k=0

xk(0)φk(ξ) x0(0) = −1 xk(0) = 0 for k ≥ 2 (2.45)

ẋ(0, ξ) =
N∑
k=0

ẋk(0)φk(ξ) ẋ0(0) = −1 ẋk(0) = 0 for k ≥ 2 (2.46)

η(ξ) =
N∑
k=0

θ1kφk(ξ) θ10 = 1.15 θ11 = 0.25 θ1k = 0 for k > 2 (2.47)

α(ξ) =
N∑
k=0

θ2kφk(ξ) θ20 = −1.2 θ21 = 0.25 θ2k = 0 for k > 2 (2.48)

where, φk are Legendre polynomials according to the gPC procedure. In this example, 6th

order polynomial chaos (N = 6) has been used to solve Eq. (2.44) and simulation time
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Figure 2.5: Moments of Monte Carlo solution at t = 2 sec.

interval is up to 10 seconds. Also, we have used 5 quadrature points in each direction of

random variable ξ to evaluate Galerkin projection equations.

Convergence of the mean of states x and ẋ has been shown in Fig. 2.5 as a function

of different number of MC runs at t = 2 sec. From these plots, it is clear that one needs

minimal 3× 104 runs to guarantee convergence in the mean for both x and ẋ.

The gPC approximated first three central moments for state x and ẋ are compared

against those evaluated by using 105 Monte Carlo runs in Fig. 2.6 and Fig. 2.7, respectively.

It is clear that the second order (N = 2) gPC expansion is able to capture the mean and

variance for both x and ẋ, however, one needs 6th order expansion to capture first three

central moments. Furthermore, Tables 2.3 and 2.4 show the relative error in computing first

three central moments for x and ẋ using the PCQ framework and assuming 105 MC runs

to be the reference truth. It is clear that one can obtain a better approximation for three

central moments using only 9 quadrature points than 103 MC runs. It should be noted that

the PCQ approximation error is within the convergence error of MC runs.

Finally, Fig. 2.8 and Fig. 2.9 shows the histograms for state x and ẋ using 105 MC runs

and 6th order gPC expansion at t = 10 seconds. From these results, it is clear that the gPC

expansion and MC method lead to similar distribution t = 10 sec.
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Figure 2.6: The first three central moments for x for Example 2.
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Figure 2.7: The first three central moments for ẋ for Example 2.
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Table 2.3: Relative error of moments of state x with respect to 105 Monte Carlo runs at

t = 2sec.

Number of

Quadrature Points
Mean

2nd Central

Moment

3rd Central

Moment

12 0.6545% 100% 100%

22 0.0279% 0.0239% 20.4861%

32 0.0269% 0.2522% 3.1240%

42 0.0269% 0.2537% 3.2633%

52 0.0269% 0.2537% 3.2642%

103 MC Simulations 0.8089% 0.5378% 19.9228%

Table 2.4: Relative error of moments of state ẋ with respect to 105 Monte Carlo runs at

t = 2sec.

Number of

Quadrature Points
Mean

2nd Central

Moment

3rd Central

Moment

12 2.0290% 100% 100%

22 0.0337% 1.2359% 63.9561%

32 0.0274% 0.1686% 2.3497%

42 0.0273% 0.2046% 2.9692%

52 0.0273% 0.2048% 3.0014%

103 MC Simulations 0.6299% 0.0791% 4.7318%
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Figure 2.8: Histogram of state x at t = 10 sec.
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Figure 2.9: Histogram of state ẋ at t = 10 sec. for Example 2.
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2.3.3 Hovering Helicopter Model

As the last example, we examine efficiency of gPC method on a helicopter model [52] with

the following system dynamics:
ẋ1

ẋ2

ẋ3

ẋ4

 =


p1 p2 −g 0

1.26 −1.765 0 0

0 1 0 0

1 0 0 0




x1

x2

x3

x4

−


0.086

−7.408

0

0

Klqr


x1

x2

x3

x4

 (2.49)

where Klqr and initial conditions are equal to:

Klqr = [1.989 − 0.256 − 0.7589 1], Xin = [0.7929 − 0.0466 − 0.1871 0.5780]T

Eq. (2.49) represents a helicopter model with an LQR controller, and actual value of p1

and p2 are p1act = −0.0257 and p2act = 0.013. We assume that p1 and p2 are uniformly

distributed uncertain parameters over the intervals [-0.2, 0] and [0, 0.2], respectively. Similar

to the previous example, initial conditions of states and initial distributions of uncertain

parameters can be represented using the gPC expansion as:

xi(0, ξ) =
N∑
k=0

xik(0)φk(ξ) xik(0) = 0 for k = 1, 2, · · · , N and i = 1, · · · , 4 (2.50)

where,

x10(0) = 0.7929, x20(0) = −0.0466, x30(0) = −0.1871, x40(0) = 0.5780

and

p1(ξ) =
N∑
k=0

a1kφk(ξ) θ10 = −0.1, θ11 = 0.1 and θ1k = 0 for k = 2, 3, · · · , N (2.51)

p2(ξ) =
N∑
k=0

a2kφk(ξ) θ20 = 0.1, θ21 = 0.1 and θ2k = 0 for k = 2, 3, · · · , N (2.52)

Fig. 2.10 shows convergence of the mean of states xi (i = 1, · · · , 4) as a function of

different number of Monte Carlo runs at t = 2 sec. It is clear that one needs at least

4 × 104 MC runs to get convergence in mean for all states. Furthermore, Tables 2.5 shows

the relative error in computing first three central moments for x1 using the PCQ framework
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Figure 2.10: Convergence of Mean of Monte Carlo solutions at t = 2 sec. for Example 3.
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Figure 2.11: Histogram of states at t = 10 sec. for Example 3.
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Table 2.5: Relative error of moments of state x1 with respect to 105 Monte Carlo runs at

t = 2sec.

Number of

Quadrature Points
Mean

2nd Central

Moment

3rd Central

Moment

12 0.1200% 100% 100%

22 0.03% 0.16% 11.00%

32 0.03% 0.5839% 0.8871%

103 MC Simulations 40.4619% 5.5996% 5.3558%

and assuming 105 MC runs to be the reference truth. It is clear that one can obtain a better

approximation for three central moments using only 9 quadrature points than 103 MC runs.

It should be noted that the PCQ approximation error is within the convergence error of MC

runs. Finally, Fig. 2.11 shows the histogram plots for all states at t = 10 seconds using the

6th order gPC expansion and 105 MC runs. From these plots, it is clear that both gPC and

Monte Carlo methods lead to similar distributions for states.

2.4 Concluding Remarks

In this chapter, the main idea of the gPC expansion theory is discussed in detail and three

numerical examples including both linear and nonlinear systems are considered to show the

efficacy of the gPC methodology in capturing the non-Gaussian behavior. Ideally, infinite

number of terms are required in the gPC expansion to capture the complete spectral content

of the state pdf, i.e., all moments. However, the finite series truncation will always result in

the error in capturing the state pdf. For examples considered in this paper, the gPC method-

ology is very competitive with the Monte Carlo approach in capturing higher order moments

accurately with reasonable computational burden. In all of the considered examples, the

gPC approach is much more numerically efficient than the Monte Carlo method.
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Chapter 3

Estimation Process

In the previous chapter, the generalized Polynomial Chaos (gPC) theory is discussed in de-

tail as a tool to propagate the state and parameter uncertainty through a nonlinear dynamic

model. The use of sensor data to correct and refine the dynamical model forecast so as to re-

duce the associated uncertainty is a logical improvement over purely model-based prediction.

However, mathematical models for various sensors are generally based upon the “usefulness”

rather than the “truth” and do not provide all the information that one would like to know.

Care must be taken when assimilating the observational data. As discussed in Chapter 1,

there is currently no generic theoretical framework that solves the nonlinear filtering prob-

lem accurately and in a computationally efficient manner. Hence, there is a need to develop

statistically and computationally efficient nonlinear filtering algorithms while appropriately

accounting for the uncertainty in process and measurement models.

In this Chapter, two different gPC based approaches have been developed to design

finite-dimension nonlinear filtering algorithms to integrate multiple sources of complementary

information with system dynamics to help reduce the uncertainty of the output. Both the

approaches make use of the gPC methodology to evaluate the high fidelity prediction between

two measurement intervals. The first proposed method makes use of Bayes’ formula to update

gPC series expansion while the second method updates the gPC series expansion based upon

minimum variance estimator.
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3.1 Fusion of Measurement Data and Process Model

Given a prediction model of Eq. (2.19), let us assume the following sensor model to obtain

the measurement data:

yk , y(tk) = h(xk,Θ) + νk (3.1)

where, yk ∈ Rk is observed sensor data and ν ∈ Rk is the measurement noise with

prescribed likelihood function p(yk|xk) which is generally assumed to be a zero mean Gaus-

sian pdf. Using the gPC uncertainty evolution as a forecasting tool , the joint state and

parameter pdf can be updated using the Bayes’ rule on the arrival of a measurement data:

p(Θ,x|Yk) =
p(Θ,x|Yk−1)p(y(tk)|Θ,x)

p(y(tk))
(3.2)

where Yk represents the measurement data up to time tk. p(Θ,x|Yk−1) is the joint prior pdf

(solution of the gPC approach) of x and Θ at time tk given all observations up to time tk−1,

p(yk|Θ,x) is the likelihood that we observe yk given x and Θ at time tk and p(Θ,x|Yk)

represents the joint posterior pdf of x and Θ at time tk given all previous observations,

including yk. Furthermore, p(yk) is the total probability of observation at time tk which can

be evaluated as follows:

p(yk) =

∫ ∫
p(Θ,x|Yk−1)p(yk|Θ,x)dΘdx (3.3)

As we concluded in the previous chapter, the gPC approach provides us a tool to determine

equations of evolutions for conditional moments for the prior joint pdf p(Θ,x|Yk−1). We

now seek to develop equations of evolutions for the posterior conditional moments. As a step

towards this goal, let us consider a continuously differentiable scalar function φ(Θ,x) and

define posterior and prior conditional moments as:

φ̂+
k = E+[φ(Θ,x)] ,

∫ ∫
φ(Θ,x)p(Θ,x|Yk)dΘdx (3.4)

φ̂−k = E−[φ(Θ,x)] ,
∫ ∫

φ(Θ,x)p(Θ,x|Yk−1)dΘdx (3.5)

Now, multiplying Eq. (3.2) with φ(Θ,x) and integrating over Θ and x, we get:

φ̂+
k =

E−[φ(Θ,x)p(yk|Θ,x)]

p(yk)
(3.6)
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Note that yk is fixed with respect to the expectation operator and thus, the right-hand side

of Eq. (3.6) is a function of yk only. Notice that Eq. (3.6) is not an ordinary difference

equation and the evaluation of right-hand side of Eq. (3.6) requires the knowledge of the

prior density function. Thus, even the computation of the posterior mean for Θ and x, i.e.,

φ = Θ or x depends upon all the other moments. In the next section, we shall present

the details to obtain a computationally realizable filter in the general nonlinear case while

making use of the gPC expansion series. For the sake of simplicity, we shall assume the

likelihood function to be a normal density function although the development present in

next section is applicable to any generic likelihood function.

p(yk|Θ,x) = N (yk|h(x(t),Θ),Rk)

,
1√

(2π)k|Rk|
e−

1
2(yk−h(x(t),Θ))T R−1

k (yk−h(x(t),Θ)) (3.7)

3.2 gPC-Bayes Approach

As discussed in the last section, the main challenge during the measurement update process

lies in evaluating expectation integrals involved in Eq. (3.6) in a numerically efficient way.

Although the gPC process does not provide us a closed-form expression for the state or

parameter pdf but it can be used effectively in computing the expectation integrals. As

discussed in the previous chapter, all moments of random variables Θ and x are just function

of their gPC expansion coefficients, i.e., Θpc and Xpc. Hence, one can just update the gPC

coefficients on the arrival of measurement data based upon Eq. (3.6). So if we define Θ−pc

and X−pc to be the prior gPC coefficients and Θ+
pc and X+

pc to be posterior gPC coefficients,

then we can evaluate φ̂−(Θ,x) and φ̂+(Θ,x) as:

φ̂−k = φ̂−(Θ,x) = E−[φ(Θ,x)] =

∫
φ(Θ−pcΦ(ξ),X−pc(t)Φ(ξ))p(ξ)dξ (3.8)

φ̂+
k = φ̂+(Θ,x) = E+[φ(Θ,x)] =

∫
φ(Θ+

pcΦ(ξ),X+
pc(t)Φ(ξ))p(ξ)dξ (3.9)

Similarly, the E−[φ(Θ,x)p(yk|Θ,x)] can be evaluated as:

Mr(Θ
−
pc,x

−
pc,yk) = E−[φ(Θ,x)p(yk|Θ,x)]

=

∫
φ(Θ−pcΦ(ξ),X−pc(t)Φ(ξ))N (yk|h(X−pc(t)Φ(ξ),Θ−pcΦ(ξ)),Rk)︸ ︷︷ ︸

ψ(Θ−
pcΦ(ξ),X−

pc(t)Φ(ξ),yk,Rk)

p(ξ)dξ

(3.10)
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For moment evaluation purpose, φ(Θ,X) is a polynomial function and one can obtain a

closed-form expressions for φ̂−k and φ̂+
k . For example, the posterior mean and covariance are

given as:

E [x+
i (t)] = xi1(t), i = 1, · · · , n (3.11)

E [x+
i (t)x+

j (t)] =
N∑
k=0

x+
ik

(t)x+
jk

(t), i, j = 1, · · · , n (3.12)

The main challenge lies in evaluating Mr(Θ
−
pc,x

−
pc,yk). As discussed in the last Chapter, one

can use quadrature scheme to evaluate Mr(Θ
−
pc,x

−
pc,yk):

Mr(Θ
−
pc,x

−
pc,yk) ≈

Nq∑
q=1

wqψ(Θ−pcΦ(ξq),X
−
pc(t)Φ(ξq),yk,Rk)

=

Nq∑
q=1

wqψ(Θ−q ,x
−
q ,yk,Rk) (3.13)

Notice that Mr(Θ
−
pc,x

−
pc,yk) is completely known since prior values of coefficients are known

from the gPC solution of the system. Also φ(Θ,x) takes the following form to match all

joint moments up to order Nm:

φ(Θ,x) = Θs1
i xs2j , s1 + s2 ≤ Nm (3.14)

Now, substitution of Eq. (3.9) and Eq. (3.13) and in Eq. (3.6) leads to Nc nonlinear coupled

equations which defines posterior gPC coefficients Θ+ and x+ in terms of prior information

which is available from measurement and gPC propagation to match all joint moments up

to order Nm:

gs1,s2(Θ
+
pc,X

+
pc) = φ̂+(Θ+

pc,x
+
pc)−

1

α
Mr(Θ

−
pc,x

−
pc,yk), α = p(yk), s1 + s2 ≤ Nm (3.15)

If we define fi(Θ
+
pc,X

+
pc) = gs1,s2(Θ

+
pc,X

+
pc), then one can pose the following minimization

problem to find a solution for posterior coefficients Θ+
pc and X+

pc.

min
Θ+

pc,X
+
pc

(
Nc∑
i=1

f 2
i (Θ+

pc,X
+
pc)

)
(3.16)

where Nc is given as:

Nc =
Nm∑
k=1

(m+ n)!

k!(m+ n− k)!

(Nm)!

k!(Nm − k)!
(3.17)
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and n and m are dimension of state x and parameter Θ, respectively. Different algorithms

like Trust-Region-Reflective Optimization [53], [54], Levenberg-Marquardt Optimization [55],

[56], [57] and Gauss-Newton approach [57], [58] can be used to solve this optimization prob-

lem. In this thesis, we have used Levenberg-Marquardt to solve this optimization problem.

For a special case for matching just posterior mean, i.e., Nm = 1, we get the following

analytical solution for the posterior coefficients:

Θ+
pc1

= κ1,0 (3.18)

X+
pc1

= κ0,1 (3.19)

where, Θ+
pc1

and X+
pc1

represents the first column of Θ+
pc and X+

pc, respectively. κ1,0 and κ0,1

are given as:

κ1,0 =

Nq∑
q=1

wq
[
Θ−pcΦ(ξ)

]
N (yk|h(Xpc(t)Φ(ξq),Θ

−
pcΦ(ξq)),Rk) (3.20)

κ0,1 =

Nq∑
q=1

wq
[
X−pc(t)Φ(ξ)

]
N (yk|h(Xpc(t)Φ(ξq),Θ

−
pcΦ(ξq)),Rk) (3.21)

Since the only moment constraint is expected value of states and parameters, the gPC-Bayes

approach just updates coefficient of just the first term in the gPC expansion of state x and

parameter Θ, and retains prior value of the rest of the coefficients.

3.3 Polynomial Chaos Based Minimum Variance Esti-

mator

In the previous section, we developed an estimation algorithm to estimate posterior moments

and gPC expansion coefficients by making use of the Bayes’ rule. In this section, we present

an alternative development based upon minimum variance estimator. The main advantage

of the minimum variance approach is that it is computationally more efficient than the

gPC-Bayes method and it is easier to implement.
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3.3.1 Minimum Variance Estimation with a Priori Information

Let us consider augmented state vector z consisting of both state and parameters:

z(t, ξ) =

 x(t, ξ)

Θ(ξ)

 (3.22)

We define the prior mean ẑ−k and prior covariance P−k as follows:

ẑ−k , E−[zk] =

 X−pc1(t)

Θ−pc1

 (3.23)

Pk
− , E−[(zk − ẑ−k )(zk − ẑ−k )T ] =


N∑
i=1

X−
2

pci

N∑
i=1

X−pciΘ
−
pci

N∑
i=1

X−pciΘ
−
pci

N∑
i=1

Θ−
2

pci

 (3.24)

where, X−pci and Θ−pci are the ith column of the gPC expansion coefficient matrices X−pc and

Θ−pc, respectively. Given an estimate of prior mean and covariance, the posterior mean and

covariance according to minimum variance formulation is given as [59]:

ẑ+
k = ẑ−k + Kk[yk − E−[h(xk,Θ)]] (3.25)

P+
k = P−k + KkPzy (3.26)

Kk = −PT
zy

(
P−hh + Rk

)−1
(3.27)

where, Kk is known as the Kalman gain matrix and matrices Pzy and Pzz are defined as:

ĥ−k , E−[h(xk,Θ)] =
M∑
q=1

wqh(xk(ξq),θ(ξq)) (3.28)

Pzy , E−[(zk − ẑk)(h(xk,Θ)− ĥ−k )T ] =
M∑
q=1

wq(zk(ξq)− ẑ−k )(h(xk(ξq),θ(ξq))︸ ︷︷ ︸
hq

−ĥ−k )T

(3.29)

P−hh , E−[(h(xk,Θ)− ĥ−k )(h(xk,Θ)− ĥ−k )T ] =
M∑
q=1

wq(hq − ĥ−k )(hq − ĥ−k )T (3.30)

Similar to prior mean and covariance, posterior mean ẑ+
k and covariance P+

k can also be

written in terms of posterior gPC expansion coefficients for both state and parameters:

ẑ+
k =

 X+
pc1

(t)

Θ+
pc1

 (3.31)
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P+
k =


N∑
i=1

X+2

pci

N∑
i=1

X+
pci

Θ+
pci

N∑
i=1

X+
pci

Θ+
pci

N∑
i=1

Θ+2

pci

 (3.32)

Eq. (3.25) and Eq. (3.31) provide a closed-form solution for Xpc+1
and Θ+

pc1
while one can

solve for rest of the posterior coefficients while making use of Eq. (3.26) and Eq. (3.32).
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Chapter 4

Numerical Simulation

In the previous chapter, we have developed two algorithms based upon the gPC expansion

for state and parameter estimation. In this chapter, we consider four different numerical

experiments to demonstrate performance of these methods. We also employ the EKF and

bootstrap particle filter algorithms to compare the performance of proposed methodology.

4.1 First Example: First Order System

As the first example, we consider forced first order system mentioned in section 2.3.1:

ẋ+Kx = Uin, x(0) = 0 (4.1)

where, Uin = 2e−t/10sin(2t) and prior uncertainty in K is assumed to be uniformly dis-

tributed over the interval [0.5, 1.5]. For simulation purposes, measurement data is assumed

to be available at sampling frequency of 1Hz. A random sample of K is taken from prior dis-

tribution to generate the true measurement data. The results presented in thesis corresponds

to true value of K being 1.3659 (Kact = 1.3659). The true measurement data is corrupted

with a Gaussian white noise of zero mean and variance being 0.05. To represent uncertainty

in state and parameter, 9th order gPC expansion is considered and total simulation time

interval is assumed to be 10 sec. The initial gPC expansion for K and x(0) can be written
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as:

x(0, ξ) =
9∑

k=0

xk(0)φk(ξ) xk(0) = 0 (4.2)

K(ξ) =
9∑
i=0

kiφi(ξ) k0 = 1, k2 = 0.5 and ki = 0 (4.3)

where, φk(ξ)′s are Legendre polynomial which correspond to uniform distribution of param-

eter K.

The mean estimates for parameter K and state x by using Particle Filter (PF), EKF, gPC

based minimum variance estimator, and gPC-Bayes method for different moment matching

constraints (different values of Nm) have been shown in Fig. 4.1(a) and Fig. 4.1(b), respec-

tively. As expected, the gPC-Bayes method results in more accurate results as we increase

Nm and assuming the PF approximated posterior mean to be the reference truth. Also, when

Nm = 2, the gPC-Bayes and gPC based minimum variance estimator perform very similar

in finding posterior mean estimates for both K and x. Both the EKF and the gPC-Bayes

method with Nm = 1 perform poorly in the estimation of the first posterior moment of K

and x.

Fig. 4.1(c) and Fig. 4.1(d) show posterior variance for parameter K and state x cor-

responding to different filters, respectively. As expected, the gPC-Bayes approach with

Nm = 1 can not capture the posterior variance for parameter K and state x. However, the

performance of the gPC-Bayes method improves a lot in capturing the posterior variance as

compared to the PF estimates variance by increasing Nm, i.e., number of matching moment

constraints. Once again, both the gPC-Bayes method and gPC based minimum variance

estimator perform equally well in capturing the posterior variance given by the PF and their

performance is much better than the EKF.

Furthermore, Fig. 4.1(e) and Fig. 4.1(f) show the performance of applied methods in

capturing the third posterior central moment for parameter K and state x, respectively. It

is clear that the gPC-Bayes method is not able to capture the third central moment for

Nm < 3. However, there is a significant improvement in capturing the posterior third central

moment assuming the PF approximated third central moment to be reference truth when

Nm ≥ 3. This is due to the fact that for capturing the posterior third central moment, the

minimum order of matching moment constraints should be at least three. As expected, both

the gPC based minimum variance estimator and the EKF do not perform well in capturing
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Figure 4.1: Posterior Central Moments for Parameter K and State x for Example 1.
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Table 4.1: RMSE error in first three posterior central moments for parameter K.

Nm Mean 2nd Central Moment 3rd Central Moment

1 4.1827e+000 2.3343e+000 1.7592e-002

2 3.2244e-001 2.5930e-002 1.4137e-002

3 1.5010e-001 2.5059e-002 3.7661e-003

min. Variance 3.6602e-001 6.9057e-002 1.4929e-002

EKF 4.5070e+000 5.6481e-001 1.4602e-002

Table 4.2: RMSE error in first three posterior central moments for parameter x.

Nm Mean 2nd Central Moment 3rd Central Moment

1 5.7567e-001 1.6527e-001 6.9901e-003

2 5.1621e-002 2.2547e-003 1.5859e-003

3 2.0171e-002 8.8121e-004 3.9529e-005

min. Variance 1.3997e-001 8.5417e-003 1.2629e-003

EKF 1.4636e+000 3.6966e-002 1.9292e-003

the third central moment for both K and x.

Finally, Tables 4.1 and 4.2 show the root mean square error over time in capturing central

moments for parameter, K and state, x, respectively. We assume the PF estimated posterior

central moment to be the reference truth to compute the root mean square error. Although

one should be careful about this comparison as the PF does not provide the “truth” posterior

moments due to various assumptions involved regarding the selection of importance function

in the measurement update part. As expected, the gPC-Bayes method results in less error

in estimation of posterior moments for both parameter K and state x as one increases the

number of matching moment constraints, i.e., Nm. Also, the gPC based minimum variance

estimator performs almost 10 times better than the EKF in estimation of the first two central

moments for x.

In summary, it is clear that the proposed methods perform very well as compared to the

PF results in capturing not only the posterior mean but also the higher moments. The main

advantage of the gPC-Bayes approach is that one can vary the number of moment matching

constraints depending upon the desired accuracy in capturing higher order posterior mo-
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ments. The poor performance of the EKF algorithm can be attributed to the nonlinearity

involved due to simultaneous state and parameter estimation problem.

4.2 Duffing Oscillator

We next consider the Duffing oscillator of Eq. (2.44) in section 2.3.2

ẍ+ ηẋ+ αx+ βx3 = sin(3t) (4.4)

We consider two different scenarios: 1) we consider pure state estimation problem by assum-

ing initial conditions to be uncertain and 2) We consider simultaneous sate and parameter

estimation problem by assuming parameters (α and β) to be uncertain.

4.2.1 Second Example: Pure State Estimation

For simulation purposes, nominal parameter values are assumed to be given as:

η = 1.3663, α = −1.3761 β = 2

The initial states are assumed to be normally distributed:

x(0) = N (x0| − 1, 0.25), ẋ(0) = N (ẋ0| − 1, 0.25)

To analyze the effect of initial condition uncertainty, 4th order gPC expansion is considered.

Hence, polynomial chaos expansion of states will be equal to:

x(0, ξ) =
4∑

k=0

xk(0)ψk(ξ) x0(0) = −1, x1(0) = 0.5, xk(0) = 0, for k > 2 (4.5)

ẋ(0, ξ) =
4∑

k=0

ẋk(0)ψk(ξ) ẋ0(0) = −1, ẋ1(0) = 0.5, ẋk(0) = 0 for k > 2 (4.6)

where, ξ = [ξ1 ξ2]T is a vector of normally distributed random variables ξ1 and ξ2. Also,

ψk(ξ)′s are Hermite polynomials which are used to describe Gaussian distribution of states.

To verify efficiency of our method, we compared the performance of the proposed methods

with the EKF results. The measurement data is assumed to be available at a sampling

frequency of 1Hz. A random sample of initial conditions is taken from prior initial condition
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Figure 4.2: Estimation Error and 3σ Bounds for the EKF Approximated Posterior Mean for

Example 2

distribution to generate the true measurement data. The true measurement data is then

corrupted with a Gaussian white noise of zero mean and variance being:

R =

 σ2 0

0 σ2


σ is assumed to be 0.05 in our simulations.

Fig. 4.2(a) and Fig. 4.2(b) show the state estimation error for x and ẋ, respectively.

The solid blue line represents the difference between the true value and its mean estimate.

Dashed green line shows −3σ bound while the dashed red line represents the 3σ bound.

From these plots, it is clear that the state estimation error increases significantly during the

time although it is always bounded by ±3σ bounds. The poor performance the EKF can be

attributed to strong nonlinearities and sparse data frequency of 1 Hz.

Fig. 4.3 shows the error in state estimates using the gPC-Bayes method for various values

of Nm. The solid blue line represents the difference between the true value and its mean

estimate. Dashed green line and dashed red line represent the min and max bounds on

estimation errors, respectively. It is clear that estimation error and corresponding min-

max bounds for estimation error converge to zero over the time. This is due to the fact

that posterior density function finally converges to a dirac-delta function around the truth

which is expected as number of measurements increases over the time. Also, it should be
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eẋmin

(b) Estimation Error for ẋ (Nm = 1)
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Figure 4.3: Estimation Error and min-max Bounds for the gPC-Bayes Approximated Pos-

terior Mean for Example 2
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Figure 4.4: Estimation Error and 3 − σ Bounds for the gPC Based Minimum Variance

Estimator Approximated Posterior Mean for Example 2

noticed that min-max bounds becomes more and more tighter as one increases the number

of matching moment constraints, i.e., Nm. Futhermore, Fig. 4.4 shows the error in state

estimates along with its min-max bounds using the gPC based minimum variance estimator.

Once again, the estimation error along with min-max bounds converge to zero over the time

which can be again attributed to the posterior density function being a delta function as

number of measurements increases. Form these results, it is clear that the proposed methods

do very well in not only estimating the posterior mean but posterior density function also.

4.2.2 Example 3: Simultaneous State and Parameter Estimation

As the third example, let us consider the problem of simultaneous state and parameter

estimation problem for the Duffing oscillator:

ẍ+ ηẋ+ αx+ βx3 = Uin x(0) = −1, ẋ(0) = −1, Uin = sin(3t) (4.7)

Like in Chapter 2, η and α are assumed to be uniformly distributed uncertain parameters over

the intervals [0.9, 1.4] and [−1.45,−0.95], respectively. The nominal value for β is assumed to

be 2. For simulation purposes, measurement data is assumed to be available at a sampling

frequency of 1Hz. A random sample of η and α is taken from their prior distributions

to generate the true measurement data. The true measurement data is corrupted with
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a Gaussian white noise of zero mean and variance being 0.05. To represent uncertainty

in state and parameter, 7th order gPC expansion is considered and total simulation time

interval is assumed to be 5 sec. The initial gPC expansion for η, α and states can be written

as:

x(0, ξ) =
7∑

k=0

xk(0)φk(ξ) x0(0) = −1 xk(0) = 0 for k ≥ 2 (4.8)

ẋ(0, ξ) =
7∑

k=0

ẋk(0)φk(ξ) ẋ0(0) = −1 ẋk(0) = 0 for k ≥ 2 (4.9)

η(ξ) =
7∑

k=0

ηkφk(ξ) η0 = 1.15, η1 = 0.25 and ηk = 0 for k > 2 (4.10)

α(ξ) =
7∑

k=0

αkφk(ξ) α0 = −1.2, α1 = 0.25 and αk = 0 for k > 2 (4.11)

All expectation integrals involved in the gPC-Bayes method are evaluated by using 25

quadrature points in each dimension of random variables ξ1 and ξ2 resulting in a total of 625

quadrature points.

Fig. 4.5(a) and Fig. 4.5(b) show posterior mean estimates corresponding to different fil-

ters for parameter η and α, respectively. As expected the gPC-Bayes method estimates

converges to the PF approximated posterior mean as we increase number of matching mo-

ments constraints, i.e., Nm. Also, the gPC based minimum variance estimator performs

similar to the gPC-Bayes method with Nm = 2. It is also clear that the EKF performs worst

in approximating the posterior mean for parameters.

The posterior variance for parameters η and α has been shown in Fig. 4.5(c) and Fig. 4.5(d),

respectively. As expected the gPC-Bayes method does not capture the posterior variance for

Nm = 1, however, the performance of the gPC-Bayes approach improves significantly for Nm

greater than one. Furthermore, Fig. 4.5(e) and Fig. 4.5(f) show the plot of posterior third

central moment corresponding to various filters for parameters η and α, respectively. As

expected, the gPC based minimum variance estimator and EKF are not able to capture the

third central moments assuming the PF approximation to be the reference truth. The gPC-

Bayes method performs well in approximating the third central moment up to two seconds

for Nm = 3. However, the gPC-Bayes method performs poorly even for Nm = 3 for time

greater than two seconds. The poor performance the gPC-Bayes method can be attributed

to the finite gPC approximation. We will discuss this issue in much more detail in section
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Figure 4.5: Posterior Central Moments for η and α for Example 3.
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4.2.2.

Tables 4.3 and 4.4 shows the root mean square error over time in approximating first

three posterior central moments for parameters, η and α, respectively. We assume the PF

approximated posterior moments to be reference truth for the evaluation of root mean square

error. As expected, the gPC-Bayes method results in less error in estimation of posterior

moments as one increases the number of matching moment constraints, i.e., Nm. Also,

proposed methods performs a order of magnitude better than the EKF in estimation of the

first three central moments.

Table 4.3: RMSE error in first three posterior central moments for η

Nm Mean 2nd Central Moment 3rd Central Moment

1 1.6894e+000 3.9390e-001 1.3371e-002

2 2.1844e-001 7.8388e-002 1.3233e-002

3 3.2892e-001 7.4929e-002 2.1433e-002

min. Variance 5.8136e-001 8.3721e-002 1.3263e-002

EKF 5.4728e+000 2.6102e-001 1.3245e-002

Table 4.4: RMSE error in first three posterior central moments for α

Nm Mean 2nd Central Moment 3rd Central Moment

1 1.9049e+000 4.9394e-001 3.8996e-003

2 1.4937e-001 1.1782e-002 3.5675e-003

3 1.4523e-001 2.9626e-002 4.3245e-003

min. Variance 4.3090e-001 4.8743e-002 3.5880e-003

EKF 2.5449e+000 1.8308e-001 3.4666e-003

Fig. 4.6 shows the plots for first three posterior central moments for both states x and

ẋ. Also, Tables 4.5 and 4.6 shows the RMSE error over time in approximating first three

central moments for x and ẋ, respectively. Form these results, it is clear that the gPC bayes

method performs well in capturing all three central moments as the number of matching

moment constraints are increased. The EKF performs worst among all the filters as it even

fails to capture the posterior mean also. The gPC based minimum variance filter performs

well in capturing the first two central moments but is not able to capture the third central
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Table 4.5: RMSE error in first three posterior central moments for x

Nm Mean 2nd Central Moment 3rd Central Moment

1 7.0649e-001 8.5432e-002 1.9670e-003

2 6.7726e-002 2.3682e-003 1.5666e-004

3 6.1157e-002 6.2015e-003 3.0797e-004

min. Variance 1.7341e-001 5.7130e-003 1.7355e-004

EKF 9.5327e-001 1.6320e-002 9.2697e-005

Table 4.6: RMSE error in first three posterior central moments for ẋ

Nm Mean 2nd Central Moment 3rd Central Moment

1 2.8121e-001 1.9142e-002 3.8337e-004

2 3.7524e-002 1.4365e-003 1.0563e-004

3 3.1312e-002 2.0126e-003 7.7402e-005

min. Variance 1.0039e-001 2.6557e-003 1.1128e-004

EKF 7.1761e-001 1.6451e-002 1.7959e-004

moment accurately. It should be noticed that the error of the gPC based minimum variance

estimator is considerably less than the EKF.

Error Analysis

As we noticed in the last section, after some time the posterior distribution/moments ap-

proximated by the gPC-Bayes method do not match well with those approximated by the

PF especially for the third central moment approximation. In order to analyze this issue in

more detail, let us reconsider Fig. 4.6. Notice that all three posterior central moments for x

approximated by the gPC-Bayes method match well with the PF approximation up to first

measurement update, i.e., t = 1 second for Nm = 3. To make this point more clear, the first

three posterior central moments for x at t = 1 second are listed in Table 4.7. Furthermore,

Fig. 4.7 shows histograms corresponding to posterior distribution for x after the first mea-

surement update at t = 1 second for gPC-Bayes (Nm = 3) and the PF. From Fig. 4.7, it is

clear that even though the first three central moments of x are the same at t = 1 second,

but the posterior distributions approximated by using the PF and gPC-Bayes method are
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Figure 4.6: Posterior Central Moments for States for Example 3.
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bit different due to mismatch in higher order moments. This discrepancy between the PF

and the gPC-Bayes method grows when we propagate these two distributions to the next

measurement update interval as shown in histogram plots of Fig. 4.8 and moment data in

Table 4.8. Ideally one can overcome this error by increasing the number of moment match-

ing constraints and the order of the gPC expansion which leads to higher computational

load. In practice, one needs to compromise between the computational load and accuracy in

approximating higher order moments. Currently, the computational load measured in terms

of CPU time in running the MATLAB based simulation is minimal as shown in Table 4.9.
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Figure 4.7: histograms of state x1 after the measurement update at t = 1 sec.

Table 4.7: First three posterior central moments of state x at t = 1 sec. by using the PF

and gPC-Bayes method (Nm = 3)

Method Mean 2nd Central Moment 3rd Central Moment

PF -8.2328e-001 8.5817e-004 -5.0996e-006

gPC-Bayes (Nm = 3) -8.2322e-001 8.5724e-004 -5.0696e-006
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Figure 4.8: histograms of state x before the measurement update at t = 2 sec.

Table 4.8: First three central moments of state x before the measurement update at t = 2 sec.

by using PF and gPC-Bayes method (Nm = 3)

Method Mean 2nd Central Moment 3rd Central Moment

PF -6.3336e-001 2.9261e-003 1.7150e-006

gPC-Bayes (Nm = 3) -6.6187e-001 1.5869e-003 1.0685e-006

Table 4.9: Computational time required for different estimation approaches for Example 3

Nm EKF PF min. Variance gPC-Bayes

1 2.0219e+002

2 0.955887 3.6260e+004 2.1469e+001 2.8672e+002

3 1.6657e+004
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4.3 Example 4: Hovering Helicopter Model

As the last example, we examine efficiency of proposed approach on hovering helicopter

model considered in section 2.3.3:
ẋ1

ẋ2

ẋ3

ẋ4

 =


p1 p2 −g 0

1.26 −1.765 0 0

0 1 0 0

1 0 0 0




x1

x2

x3

x4

−


0.086

−7.408

0

0

Klqr


x1

x2

x3

x4

 (4.12)

where, Klqr and initial conditions are given as:

Klqr = [1.989 − 0.256 − 0.7589 1], Xin = [0.7929 − 0.0466 − 0.1871 0.5780]T

Like in Chapter 2, p1 and p2 are assumed to be uniformly distributed parameters over the

intervals [−0.2, 0] and [0, 0.2], respectively. For simulation purposes, measurement data is

assumed to be available at a sampling frequency of 1Hz. A random sample of unknown

parameters is taken from their prior distributions to generate the true measurement data.

The true measurement data is corrupted with a Gaussian white noise of zero mean and

standard deviation being 0.15 times an identity matrix. To represent uncertainty in state

and parameter, 7th order gPC expansion is considered and total simulation time interval is

assumed to be 10 sec. The initial gPC expansion for parameters and states can be written

as:

xi(0, ξ) =
7∑

k=0

xik(0)φk(ξ) xik(0) = 0 for k ≥ 2 (4.13)

p1(ξ) =
7∑

k=0

p1kφk(ξ) p10 = −0.1, p11 = 0.1 and p1k = 0 for k > 2 (4.14)

p2(ξ) =
7∑

k=0

p2kφk(ξ) p20 = 0.1, p21 = 0.1 and p2k = 0 for k > 2 (4.15)

where,

x10(0) = 0.7929, x20(0) = −0.0466, x30(0) = −0.1871, x40(0) = 0.5780

Fig. 4.9, Fig. 4.10 and Fig. 4.11 show first three posterior moments corresponding to

various filters for parameters and states, respectively. Furthermore, the RMSE error over
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Table 4.10: RMSE error in first three posterior central moments for p1

Nm Mean 2nd Central Moment 3rd Central Moment

1 1.1953e+000 2.9702e-002 1.1897e-003

2 1.5290e-001 1.3637e-002 1.2369e-003

3 2.5390e-001 2.5835e-002 2.9821e-003

min. Variance 3.5699e-001 1.2942e-002 1.2012e-003

EKF 3.7481e+001 8.3300e-002 1.1908e-003

Table 4.11: RMSE error in first three posterior central moments for p2

Nm Mean 2nd Central Moment 3rd Central Moment

1 4.5432e-001 9.2948e-002 3.3328e-005

2 3.9870e-002 1.0262e-003 3.8086e-005

3 1.3396e-001 2.5424e-003 7.3500e-005

min. Variance 1.3444e-001 1.6340e-003 4.3682e-005

EKF 1.8933e+001 4.0457e-002 4.9844e-005

time in approximating first three central moments for parameters and states are listed in

Tables 4.10-4.15. As expected, the accuracy of the gPC bayes method in capturing first three

central moments improves as the number of matching moment constraints are increased.

Like in the previous example, the performance of the gPC-Bayes filter in approximating the

third central moment degrades over the time which can be attributed to finite order gPC

approximation. The EKF performs worst among all the filters as it even fails to capture the

posterior mean. The gPC based minimum variance filter performs better than the EKF in

capturing the first two central moments.
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Figure 4.9: Posterior Central Moments for Parameters for Example 4.
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Figure 4.10: Posterior Central Moments for States (x1 and x2) for Example 4.
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Figure 4.11: Posterior Central Moments for States (x3 and x4) for Example 4.
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Table 4.12: RMSE error in first three posterior central moments for x1

Nm Mean 2nd Central Moment 3rd Central Moment

Nm em1 em2 em3

1 7.3690e-001 8.2452e-001 1.6527e-001

2 9.0236e-002 5.6440e-003 5.0475e-004

3 2.6761e-001 6.2849e-003 5.5725e-004

min. Variance 1.0965e-001 4.0795e-003 2.1633e-004

EKF 4.9379e-001 1.0192e-001 2.5809e-003

Table 4.13: RMSE error in first three posterior central moments for x2

Nm Mean 2nd Central Moment 3rd Central Moment

1 2.1177e+000 8.4853e+000 4.8704e+000

2 2.6311e-001 6.0901e-002 1.7531e-002

3 8.8713e-001 7.1439e-002 1.6858e-002

min. Variance 3.4365e-001 4.0294e-002 6.6701e-003

EKF 1.9873e+000 7.6455e-001 4.3517e-002

Table 4.14: RMSE error in first three posterior central moments for x3

Nm Mean 2nd Central Moment 3rd Central Moment

1 3.0801e+000 7.0409e+000 4.1151e+000

2 3.5989e-001 4.2817e-002 1.0236e-002

3 7.3013e-001 3.8105e-002 6.5463e-003

min. Variance 2.9859e-001 3.4430e-002 6.4499e-003

EKF 1.7666e+000 1.2186e-001 3.9159e-003
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Table 4.15: RMSE error in first three posterior central moments for x4

Nm Mean 2nd Central Moment 3rd Central Moment

1 1.0644e+000 7.8987e-001 1.5967e-001

2 1.3487e-001 5.3220e-003 3.8942e-004

3 2.4717e-001 4.5880e-003 3.5806e-004

min. Variance 1.0671e-001 5.1191e-003 3.7074e-004

EKF 8.0420e-001 2.1144e-002 2.2017e-004

Finally, Table 4.16 shows the CPU time required for Particle Filter, EKF, gPC-Bayes,

and gPC based minimum variance estimator implementation in the MATLAB environment.

Offcourse, the EKF is faster than all the other approaches, but similar to other examples,

because of low measurement data frequency and also nonlinearities of augmented system, the

EKF also results in poor estimates for both states and parameter. The gPC-Bayes method

with low values of Nm is much faster than the PF. However by increasing the number of

matching moment constraints (Nm), computational time increases. Also, the gPC based

minimum variance estimator performs much faster than the gPC-Bayes method but does

not capture higher order moments as well as the gPC-Bayes method.

Table 4.16: Computational time (seconds) required for different estimation approaches

Nm EKF PF min. Variance gPC-Bayes

1 2.6441e+002

2 1.1454 8.8284e+003 2.5619e+001 6.0449e+002

3 3.4292e+004
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Chapter 5

Conclusions

In this thesis, two new recursive approaches have been developed to provide accurate es-

timates for posterior moments of both parameters and system states while making use of

the generalized polynomial chaos framework for uncertainty propagation. The main idea of

the Generalized polynomial chaos method is to expand random state and input parameter

variables involved in a stochastic differential/difference equation in a polynomial expansion.

These polynomials are associated with the prior pdf for the input parameters. Later, Galerkin

projection is used to obtain deterministic system of equations for the expansion coefficients.

The first proposed approach (gPC-Bayes) provides means to update prior expansion coef-

ficients by constraining the polynomial chaos expansion to satisfy the desired number of

posterior moment constraints derived from the Bayes’ rule. The second proposed approach

makes use of the minimum variance formulation to update polynomial chaos expansion co-

efficients. The main advantage of proposed methods is that they not only provide point

estimate for the state and parameters but they also provide statistical confidence bounds

associated with these estimates.

Four different numerical examples ranging from one dimensional system to four dimen-

sional system are considered to compare the performance of proposed methods against bench-

mark algorithms like the extended Kalman filter and the particle filter. The numerical results

show that the proposed methodologies perform much better than the extended Kalman filter

in capturing the posterior mean for both state and parameter. Furthermore, it is demon-

strated that one can converges to the particle filter estimates for not only posterior mean but

also higher order moments by increasing the number of matching moment constraints in the
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gPC-Bayes method. The minimum variance method is shown to provide consistently a valid

estimates for both posterior mean and variance for both state and parameters. Although we

have not performed a detailed computational analysis, numerical example results show that

the processor time associated with the polynomial chaos based minimum variance estimator

and the gPC-Bayes method with one or two matching moment constraint is much lower

than that associated with the particle filter and slightly higher than the extended Kalman

filter while consistently providing accurate estimates for posterior mean and variance. Like

any other nonlinear filtering approach, the computational burden increases considerably as

one increases the number of matching moment constraints which helps in providing a better

spectral content of the posterior density function.

An open research issue is to associate the error in approximating moments with the order

of the polynomial chaos expansion. This kind of error analysis can help one in selecting

the order of polynomial chaos expansion to match desired order of moments. However, this

analysis is difficult due to the absence of any closure in moment space. Furthermore, another

important issue is the consideration of the white noise in the polynomial chaos framework.

Although some recent progress has been made in this direction but a lot more needs to be

done. It is hoped that further research in this area will shed light on these problems.
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[57] Moré, J., “The Levenberg-Marquardt algorithm: Implementation and theory,” Numer-

ical Analysis , edited by G. Watson, Vol. 630 of Lecture Notes in Mathematics , Springer

Berlin / Heidelberg, 1978, pp. 105–116.

[58] Dennis, J.E., J., Nonlinear Least-Squares, State of the Art in Numerical Analysis , Aca-

demic Press, 1977.

[59] Gelb, A., Applied Optimal Estimation, MIT Press, 1974.

71


