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Abstract

Volcanic ash advisory centers are charged with forecasting the movement of volcanic ash plumes, for aviation,
health and safety preparation. Deterministic mathematical equations model the advection and dispersion of these
plumes. However initial plume conditions – height, profile of particle location, volcanic vent parameters – are known
only approximately at best, and other features of the governing system such as the windfield are stochastic. These
uncertainties make forecasting plume motion difficult. As a result of these uncertainties, ash advisories based on a
deterministic approach tend to be conservative, and many times over/under estimate the extent of a plume. This paper
presents an end-to-end framework for generating a probabilistic approach to ash plume forecasting. This framework
uses an ensemble of solutions, guided by Conjugate Unscented Transform (CUT) method for evaluating expectation
integrals. This ensemble is used to construct a polynomial chaos expansion that can be sampled cheaply, to provide
a probabilistic model forecast. The CUT method is then combined with a minimum variance condition, to provide a
full posterior pdf of the uncertain source parameters, based on observed satellite imagery.

The April 2010 eruption of the Eyjafjallajökull Volcano in Iceland is employed as a test example. The puff

advection/dispersion model is used to hindcast the motion of the ash plume through time, concentrating on the period
14-16 April 2010. Variability in the height and particle loading of that eruption is introduced through a volcano column
model called bent. Output uncertainty due to the assumed uncertain input parameter probability distributions, and a
probabilistic spatial-temporal estimate of ash presence are computed.

Keywords: inverse problem, source parameter estimation, polynomial chaos, minimum variance estimator, hazard
map

1. Introduction1

Ash clouds are produced by the explosive eruptions of volcanoes. These clouds, propagating downwind from a2

volcano eruption column, are a hazard to aircraft, causing damage to the engines [1]. On December 15, 1989, KLM3
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Flight 867 lost all its engines when the airplane entered a plume of ash originating at the Redoubt Volcano in the4

Aleutian Islands [2]. That incident caused more than $80 million (US) in damage to the aircraft, but fortunately no5

lives were lost. The recent eruption of the EyjafjallajökullVolcano in Iceland wreaked havoc on European aviation6

after the eruption started on April 14, 2010. Decisions about the closure of European air-space, largely based on7

deterministic ash plume models, resulted in more than $4 billion in economic losses and left more than 10 million8

stranded passengers[3]. In addition to the large financial consequences of volcanic eruptions, there are significant9

health and environmental consequences of ash propagation and its subsequent fallout, ranging from inhalation of10

the ash particles to crop damage from tephra fallout. Clearly, those charged with volcanic risk management need11

accurate information for decision making. Among other components, this information flow should include a map of12

the probability of ash being present at a given location at a specified time.13

Other hazardous events present similar needs. For example, the accidental release of radioactive gaseous material,14

such as occurred at the Chernobyl nuclear reactor explosion, or the oil spill resulting from the Deepwater Horizon15

accident in Gulf of Mexico, also demand tools and approaches, to accurately forecast the advection and dispersion of16

a material.17

The primary objective of this work is to present an accurate and computationally efficient method to create prob-18

abilistic hazard maps for ash plume motion, which quantifies the uncertainties present in any model of ash advection19

and dispersion, and which integrates observation data whenever it is available. Providing such a map will enable20

public safety officials to make better decisions.21

To be computationally tractable, the probabilistic framework presented here relies on a recently developed Con-22

jugate Unscented Transformation (CUT) methodology to efficiently compute expectation integrals [4–7]. A linear23

unbiased minimum variance estimator is used in conjunction with the CUT methodology to provide estimates for24

source parameters and the associated uncertainty. A polynomial chaos-based emulation model is then used to com-25

pute a hazard map. Finally, numerical experiments are performed using data from the Eyjafjallajökull eruption, to26

validate the proposed methodology.27

1.1. Current Approaches and Limitations28

Often times volcanologists extrapolate information from past eruptions to create maps forecasting future events29

and areas at risk. Basing forecasts solely on past recorded events does not always provide a reliable estimate of likely30

eruption scenarios – prior events may have gone unreported, and site-specific conditions may have changed. Computer31

simulations using physics-based model equations, calibrated using field data, provide additional information on which32

to base hazard forecasts. To predict ash cloud movement, model systems may incorporate stochastic variability,33

such as uncertainty in source parameters or randomly varying wind fields, to better capture possible ash particle34

transport. A major source of uncertainty impacting the location of a volcanic ash cloud are the characteristics of35

the volcanic eruption column, including the distribution of grain size in the column and the column rise height [8].36

Several investigations have tried to quantify the effect of source parameter uncertainty on the position of ash clouds.37

For example, during the Eyjafjallajökull eruption, the London Volcanic Ash Advisory Centers (VAAC) used the38

NAME computational model [9] for ash advection/dispersion to make forecasts of the position of the ash cloud,39

which in turn were used to issue advisories to the airline industry. In related work, Denevish et al. [10] applied40

NAME, with a specified set of input source parameters estimated from measurement data, to study the arrival of41

the Eyjafjallajökullash cloud over the United Kingdom. Through a sensitivity analysis, this study demonstrated that42

the position and concentration of ash over a given region of interest were particularly dependent on eruption source43

parameters such as the column height and the particle profile within the column. O’Dowd et al. [11] simulated44

the dispersion of ash from Eyjafjallajökull using the REMOTE computational model, for a specified set of source45

parameters. In another study, Webley et al. [12] used the WRF-Chem dispersion and tracking model to forecast46

the ash cloud position, given the column height, particle grain-size distribution and mass eruption rate. Heinold et47

al. [13] simulated the Eyjafjallajökull emission, transport, and particle deposition over Europe by using the regional48

chemistry-transport model COSMO-MUSCAT, given the height of ash particles and their size distribution. Dispersion49

of the ash cloud from the Eyjafjallajökull eruption has also been simulated by using the FALL3D computational50

model [14], where the input parameters are approximated from the observed height of the eruption column and from51

the total grain size distribution as reconstructed from field observations. These investigations each apply different52

computational models to forecast ash cloud position as a function of time, each with its successes and limitations.53

In each instance, however, a specified set of the eruption source parameters, perhaps obtained retrospectively from54
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radar or satellite data, is used to forecast ash cloud motion. Because there is great uncertainty in the model inputs,55

deterministic physics based models alone are limited in their ability to make meaningful forecasts.56

In order to make accurate long-term forecasts, it is necessary to understand how the uncertainty in source pa-57

rameters and the variability of wind fields propagate through the numerical advection/dispersion codes. Although a58

detailed sensitivity analysis can relate the variations in source parameters and wind data to ash cloud motion, uncer-59

tainty analysis provides a richer suite of tools, allowing an assessment of one’s confidence in making forecasts based60

on all available information. Of course a successful application of uncertainty analysis must overcome the challenges61

posed by the large number of uncertain input parameters and the associated cost of computation. Data input and output62

drive the calculations of uncertainty quantification, and present additional difficulties for any analysis. Importantly,63

in real-time hazard assessment one is constrained by the need for rapid analysis. Each of these factors affects the64

trade-off between completeness and speed. In addition, propagating uncertain model inputs leads to forecasts with65

uncertainties that grow in time and which must be tamed in order to make useful forecasts; assimilating available66

observational data to refine the model forecast reduces these uncertainties.67

Surprisingly, limited research has been done on fusing model forecasts with available measurement data to accu-68

rately forecast ash cloud motion. The exceptions are the recent works of Stohl et al. , Denlinger et al. and Kristiansen69

et al. [15–17], who use inversion methods to couple a-priori source information and the output of dispersion models70

together with satellite data, to estimate volcanic source parameters. As a consequence, simulations performed by71

using these posterior source estimates result in better correspondence with satellite data. The major drawback of this72

approach is that the inversion method results in a deterministic point estimate for the posterior values of source pa-73

rameters, and completely neglects prior information and inaccuracies in measurement data. An alternative to simply74

fitting the measurement data is to exploit sensor noise characteristics. A simple probabilistic approach is to apply a75

Maximum Likelihood Estimate (MLE) [18] to estimate the parameter values. However, the MLE also provides only76

point estimates and does not provide any information about one’s confidence in those estimates.77

A Bayesian method such as the Maximum a posteriori (MAP) estimation [19] combines a prior distribution78

together with information contained in measurements, to provide optimal estimates for source parameters. Like the79

MLE method, significant computational effort is required to solve the optimization problem resulting from the MAP80

approach, to determine optimal source parameters. This computational burden restricts the application of the method81

in large scale dynamical systems.82

1.2. Our Approach83

A useful alternative is to employ a spectral representation of uncertain parameters and system states. These ideas84

have been developed through the use of a generalized polynomial chaos (gPC) expansion for random variables and85

stochastic processes. gPC is an extension of the polynomial chaos (PC) idea of Wiener [20], and has been used86

to quantify the forward propagation of uncertainty in dynamic problems [21, 22]. gPC has been recently used in a87

Bayesian framework as part of a parameter estimation problem (these are also referred to as inverse problem) [23–25].88

In one such application, Marzouk et al. [24] used a gPC expansion in conjunction with a Markov chain Monte Carlo89

(MCMC) technique, to find a point estimate for an uncertain source parameter, as a maximum posterior estimate.90

In a different approach, Li et al. [23] generated a large ensemble of realizations as part of an Ensemble Kalman91

filter (EnKF), each of which is updated within a gPC framework. In both of these examples, the gPC formulation92

is used to propagate state or parameter uncertainty through a dynamic system of equations. Both examples involve93

the computation of projection and/or expectation integrals. The numerical error and computational complexity of94

the gPC approach stems from numerical quadrature schemes used to compute these integrals. Often times Gaussian95

quadrature methods are used in these calculations. Unfortunately the numerical accuracy of the Gauss quadrature96

scheme cannot be easily refined without incurring an exponential increase in computational cost. As an alternative,97

sparse grid quadrature schemes or Smolyak quadrature schemes require fewer computational points than do Gauss98

quadrature rules for the same accuracy. But sparse grid and Smolyak schemes introduce negative weights into the99

quadrature calculations, a feature that can cause difficulties with convergence, especially the convergence of higher100

order moments [26, 27].101

In contrast to all of these approaches, this paper presents an end-to-end process for generating probabilistic maps102

of atmospheric ash. Figure 1 outlines our basic approach. Past knowledge of similar eruption and eruption source103

observation are used to create an initial probability distribution of the model parameters, for a recently developed104

model that couples a volcanic eruption column (the bent model) with a volcanic ash transport and dispersion (VATD)105



R. Madankan et al. / Journal of Computational Physics 00 (2013) 1–26 4

 

BENT PUFF Ensembles 

Satellite Image 

Volcano Eruption 

NCEP/NCAR 

Wind Field 

 

 CUT Quadrature 

points 

Update source parameter 

distribution using Polynomial Chaos 

surrogate  

 

Source Parameter 

Uncertainty 

BENT-PUFF 

Ensemble 

 
BENT-PUFF 

Ensemble 

 

BENT-PUFF 

Ensemble 

 BENT-PUFF 

Ensemble 

 

Polynomial Chaos 

surrogate 

Probabilistic 

Hazard Map 

 

Prior Mean and 

Covariance 

Minimum variance 

Estimation 

Posterior Mean and 

Covariance 

Figure 1: Schematic view of probabilistic model forecast and source parameter estimation process while incorporating prior knowledge of source
uncertainty and satellite imagery.

model (puff) [28]. These distributions are then used to generate an ensemble of simulation runs, guided by a quadra-106

ture scheme recently introduced by Adurthi et al. [5–7] called the Conjugate Unscented Transform. The ensemble107

outcomes are then integrated to generate a probabilistic map of the ash distribution in space and time by constructing108

a polynomial chaos surrogate model of the VATD model. As satellite imagery becomes available, this data is used to109

find a posterior estimate of the volcano source parameters, using a minimum variance estimator as part of the solu-110

tion of an inverse problem. Furthermore, the satellite data is also used to improve the model parameter distribution111

by updating the polynomial chaos surrogate model. These refined source parameters estimates can then be used in112

subsequent propagation and forecast.113

Although this paper employs the bent and puff models, any other column and VATD model could be used, and114

the statistical calculations appropriately adapted. Indeed, the framework introduced here provides an approach for115

developing maps for many hazard scenarios, assuming the cost of simulations is not prohibitive.116

The structure of this paper is as follows. The numerical model of eruption column and VATD is explained in117

section 2. Section 3 defines the overall approach to probabilistic model forecasting, with subsections detailing the118

calculation of probabilities from model ensembles and the procedure for minimum variance based source estima-119

tion. Section 5 describes the core computational challenges in the evaluation of expectation integrals, and our CUT120

approach to overcome these challenges. All these strands are brought together in Section 5, where a probabilistic fore-121

cast and hazard map is created and volcano source parameters estimated, using data from the 2010 Eyjafjallajökull122

volcano eruption. A discussion of results is presented in Section 6.123

2. Volcanic plume Model124

Ash transport models can be divided into two broad categories: those intended to calculate eruption column125

and tephra fall deposit characteristics based on source vent conditions, as in [29] (eruption column model), and126

those intended to forecast long-range atmospheric transport, dispersion and fallout, as in [30] (VATD model). All127
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ash transport models rely on the existence of an explicit relationship between the eruption column and atmospheric128

dynamics, and the resulting transport, dispersion and settling of the ash. The focus of this work is on the long-129

range movement of ash clouds, and not eruption column dynamics or tephra deposition. Therefore, a simple VATD130

model, but one that nonetheless contains several sources of uncertainty, is considered to focus attention on long-range131

transport and dispersion. Tanaka [31] and Searcy et al. [32] developed puff, an ash tracking model for forecasting132

the paths of incipient volcanic clouds. puff simplifies the eruption plume to a vertical source, and uses a Lagrangian133

pseudo-particle representation of the ash plume in a detailed 3-D regional windfield to determine the trajectory of134

the cloud. puff and other dispersion models have proven extremely useful in modeling the distal transport of ash135

for aviation safety [32]. During an eruption crisis, puff forecasts have been used to forecast ash cloud movement136

critical to the assessment of potential impacts – for example, on aircraft flight paths. puff has been validated against137

historic volcanic eruptions such as the 1992 Crater Peak vent eruption at Mount Spurr and the 2006 eruption at Mount138

Augustine with reasonable success [32, 33]. To start a simulation, puff requires as inputs the eruption start time and139

duration, the initial plume height, the vertical distribution of particles of varying size, a representative wind field, and140

the simulation end time. At first, some of these parameters must be assumed, based on past activity of the volcano, or141

by using the Eruption Source Parameters (ESP) of Mastin et al. [34].142

To initialize a puff simulation a collection of particles of different sizes must be specified as a function of altitude,143

a process that is not well constrained; see [35, 36]. It is important to remember that puff particles are not simple144

surrogates for ash concentration, but are representatives of ejecta of a given size at a specified height. As such this145

number is a user-selected input that affects both simulation time and resolution of the output. In addition to particle146

grain-size distribution and windfield, other puff input parameters include the coefficient of turbulent diffusion, and147

particle settling speed, both of which are estimated. Instead of guessing the initial particle distribution as a function of148

height, a volcanic eruption plume model called bent is employed to provide initial conditions for the VATD model.149

The essential features of this coupling between bent and puff is described in [28]. bent solves the equations for150

mass, momentum and energy balance, averaged over a cross-sectional slice of the eruption column [37]. bent assumes151

a grain-size distribution of pyroclasts and, depending on the volcanic vent size and the speed of the ejecta, the model152

equations forecast the height distribution of the various sized clasts. bent has been tested against plume rise height153

data and ash dispersal data [36]. In particular, the discussion in that paper (among many others) corroborates that the154

scaling relationships derived in [38] between energy and plume rise height are valid for energetic volcanic plumes155

piercing the tropopause.156

In a tool we call bent-puff, bent incorporates important physics of the volcano column and provides initial157

conditions for puff. On the one hand, physics guides the model coupling and determines how outputs from bent158

feed into puff. On the other hand, this coupling can be viewed as simply substituting one set of uncertain parameters159

in puff (vent size, velocity, clast size distribution) for an uncertain function of bent (particle height distribution).160

In any event, physically relevant inputs from the volcano source – together with their variability – are modeled and161

propagated through bent and puff.162

3. Probabilistic Hazard Map163

The problem of generating hazard maps corresponds to computing the probability of quantity of interest (QOI) ,164

such as the amount of ash present in the atmosphere at a given geographical location, given the probability distribution165

for model input parameters (hereafter when we speak of the model input parameters, we mean volcanic vent size,166

particle velocity at the vent, and grain size distribution). The accurate computation of probabilistic hazard map167

requires two principal actions:168

1. The forward propagation of variability in model input parameters, in order to compute the probability of the169

QOI at a specified place and time;170

2. The refinement of estimates of the model parameters by fusing remote-sensing observations of the ash cloud171

with the model forecast.172

3.1. Computing the Probability of a QOI173

A simplistic approach to computing hazard maps entails running numerical simulations with a range of input174

values, and computing the relative frequency of a QOI. Unfortunately, a large number of realizations (perhaps O(106))175
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are generally required to get a good convergence in probability for the QOI. This computational load renders this176

simplistic approach impractical for many dynamic models. Instead one needs a more judiciously chosen method for177

computing probabilities, recognizing the potential for a trade-off between computational efficiency and the accuracy178

of probability computations.179

In this work, we follow an approach outlined in Dalbey et. al. [39] in which the gPC methodology was employed180

to create a fast, computationally cheap polynomial surrogate model , which is used to evaluate a large number of181

samples at minimal computational cost. In the standard gPC methodology, Galerkin collocation is used to generate a182

system of deterministic differential equations for the expansion coefficients. The Galerkin collocation step fails when183

applied to problems with non-polynomial nonlinearities, and can produce non-physical solutions when applied to184

hyperbolic equations. Non-intrusive spectral projection (NISP) or stochastic collocation methods can overcome these185

difficulties [40–42]. A different formulation of the NISP idea [39] known as polynomial chaos quadrature (PCQ) is186

used here. PCQ replaces the projection step of NISP with numerical quadrature. Thus our approach for computing187

the probability for a QOI involves (1) computing coefficients of the polynomial surrogate model according to the PCQ188

formulation; (2) sampling the surrogate at a large number of inputs at minimal computational cost. Let us decribe this189

approach in more detail.190

Let x(t,Θ) ∈ Rn represent a vector of n quantities of interest which is a function of the uncertain model parameter191

vector Θ = [θ1, θ2, · · · , θm]T ∈ Rm. For example, the vector x might represent the height at the top of an ash cloud192

and/or the ash concentration, at a specified 2D or 3D location, and the parameter vector Θ might contain volcano193

source parameters (vent size, particle velocity at the vent, and grain size distribution). Θ is assumed to be time194

invariant, and a function of a standardized random vector ξ = [ξ1, ξ2, · · · , ξm]T ∈ Rm defined by a pdf p(ξ) with support195

Ω. For example, the uncertain model parameter vector for bent-puff, Θ consisting of volcano source parameters196

(vent size, particle velocity at the vent, mean grain size and standard deviation of grain size) can be assumed to be197

uniformly distributed random vector which lies in the range:198

a ≤ Θ ≤ b (1)

Hence, Θ can be written as a function of ξ consisting of four standardized uniform random variables between −1 and199

1:200

θ j =
a j + b j

2
+

b j − a j

2
ξ j, j = 1, 2, · · · , 4 (2)

If Θ is assumed to be Gaussian random vector with prescribed mean and covariance matrix, then ξ can be a vector201

of Gaussian random variables with zero mean and identity covariance. Note that Θ is not restricted to have uniform202

or Gaussian distribution. Ideally, it can have any prescribed distribution. Now, the QOI (say ash top-height at a203

geolocation) can be approximated as a linear combination of N polynomial functions of ξ:204

xi(t,Θ) =

N∑
k=0

xik (t)φk(ξ) (3)

where, φk(ξ) are orthogonal polynomial basis function set with respect to p(ξ). One can use the Gram-Schmidt205

orthogonalization to compute these basis function.206

In general, according to the PCQ methodology, the uncertain QOI, x(t,Θ) and model parameter Θ can be written
as a linear combination of orthogonal polynomial basis functions, φk(ξ), which span the space of random variables
ξ = [ξ1, · · · ξm]T and results in following polynomial surrogate model:

xi(t,Θ) =

N∑
k=0

xik (t)φk(ξ) = xT
i (t)Φ(ξ)⇒ x(t, ξ) = Xpc(t)Φ(ξ), i = 1, 2, · · · , n (4)

θ j(ξ) =

N∑
k=0

θ jkφk(ξ) = θT
jΦ(ξ)⇒ Θ(t, ξ) = ΘpcΦ(ξ), j = 1, 2, · · · ,m (5)

Here Xpc and Θpc are matrices composed of coefficients of the PC expansion for x and Θ. The coefficients θik are
obtained by making use of the normal equation:

θik =
E[θi(ξ)φk(ξ)]
E[φk(ξ)φk(ξ)]

(6)
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In this expression, the expected value of a sufficiently smooth function u(ξ) is defined as:207

E[u(ξ)] =

∫
u(ξ)p(ξ)dξ (7)

Similarly, the coefficients of xik ’s can be found from:

xik =
E[xi(t, θ(ξ))φk(ξ)]
E[φk(ξ)φk(ξ)]

(8)

In our calculations, numerical quadrature replaces exact integration. Specifically, the integrals in Eq. (6) and Eq. (8)
can be written as:

E[φi(ξ)φ j(ξ)] =

∫
φi(ξ)φ j(ξ)p(ξ)dξ '

M∑
q=1

wqφi(ξq)φ j(ξq) (9)

E[xi(t, θ(ξ))φ j(ξ)] =

∫
xi(t, θ(ξ))φ j(ξ)p(ξ)dξ '

M∑
q=1

wqxi(t, ξq)φ j(ξq) (10)

E[θi(ξ)φ j(ξ)] =

∫
θi(ξ)φ j(ξ)p(ξ)dξ '

M∑
q=1

wqθi(ξq)φ j(ξq) (11)

Notice that xi(t, ξq) represent the quantity of interest at time t with model parameter vector being evaluated at ξq,208

where ξq corresponds to quadrature value of parameter vector ξ. That is, the VATD model is solved for each input209

parameter vector ξq, and the QOI is then computed from these simulations. The resulting method can be viewed as a210

“smart” MC-like evaluation of the model equations, with sample points selected by quadrature rules. However instead211

of performing intensive simulations, the polynomial surrogate model Eq. (4) can be substituted in order to calculate212

the probability of the QOI at a given location.213

To summarize, then, given a specific location, the following algorithm can be used to compute a hazard map for a214

QOI:215

• Step 1: In the space of random variables, generate sampling points as combinations of input parameters, treated216

as random variables, corresponding to the selected quadrature scheme;217

• Step 2: Perform a simulation at each sample point using the VATD model to generate a map of the QOI, as a218

function of position;219

• Step 3: Use Eq. (8) to compute the PC expansion coefficients corresponding to the QOI, for each location;220

• Step 4: Choose a large set of secondary sample points in the stochastic space, generated from to the probability221

density function p(ξ).222

• Step 5: Compute the QOI for each secondary sample point from the surrogate model.223

3.2. Computing Posterior Distribution of Model Parameters224

Of course using any sensor data that might become available to correct and refine the model forecast will reduce
the uncertainty and will improve the accuracy of the generated hazard map. Given a forecast of the QOI xk, standard
Bayesian algorithms assume a measurement model h to obtain the measurement yk:

yk , y(tk) = h(xk,Θ) + νk (12)

where the nonlinear function h(·) captures the sensor model and νk is the measurement noise with a correlation matrix225

R The key challenge is to find an estimate for the parameter Θ and its associated uncertainty bounds, given some226

measurement data. A schematic representation of the estimation process is shown in Fig. 1.227
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As discussed in Section 1, various approaches exist to address this stochastic inverse problem. Many of these228

approaches are either computationally expensive, or restricted to a specific type of dynamical systems. Here we229

employ a linear unbiased minimum variance estimation method to minimize the trace of the posterior parameter230

covariance matrix:231

J = min
Θ

Tr
[
E[(Θ − E[Θ])(Θ − E[Θ])T ]

]
(13)

It should be noted that the minimum variance formulation is valid for any pdf, although the formulation makes use
of only the mean and covariance information. It provides the maximum a-posteriori estimate when model dynamics
and measurement model is linear and state uncertainty is Gaussian. Minimizing the cost function J subject to the
constraint of being an unbiased estimate, and using linear updating, allows us to compute the first two moments of the
posterior distribution [25, 43]:

Θ̂+
k = Θ̂−k + Kk[yk − E−[h(xk,Θ)]] (14)
Σ+

k = Σ−k + KkΣθy (15)

In this update, the gain matrix K is given by232

Kk = ΣT
θy

(
Σ−hh + Rk + Qk

)−1
(16)

Here, Θ̂−k represents the prior mean for the parameter vector Θ while incorporating measurements up to time interval233

tk−1 and Θ̂+
k represents the posterior mean for parameter vectorΘwhile incorporating measurements up to time interval234

tk:235

Θ̂−k , E−[Θk] =
∫
ξ
Θ−k (ξ)p(ξ)dξ (17)

Θ̂+
k , E+[Θk] =

∫
ξ
Θ+

k (ξ)p(ξ)dξ (18)

Similarly, the prior and posterior covariance matrices Σ−k and Σ+
k can be written as:

Σk
− , E−[(Θk − Θ̂

−
k )(Θk − Θ̂

−
k )T ] =

∫
ξ
(Θ−k (ξ) − Θ̂−k )(Θ−k (ξ) − Θ̂−k )T p(ξ)dξ ∈ Rm×m (19)

Σk
+ , E+[(Θk − Θ̂

+
k )(Θk − Θ̂

+
k )T ] =

∫
ξ
(Θ+

k (ξ) − Θ̂−k )(Θ+
k (ξ) − Θ̂−k )T p(ξ)dξ ∈ Rm×m (20)

Also, Qk denotes the model error covariance matrix in Eq. (16) which encapsulates the model’s inaccuracies. The
matrices Σθy and Σhh are defined as:

ĥ−k , E−[h(xk,Θ)] =

∫
ξ

h(x−k (ξ),Θ−(ξ))︸             ︷︷             ︸
hk

p(ξ)dξ (21)

Σθy , E−[(Θ − Θ̂k)(hk − ĥ−k )T ] =

∫
ξ
(Θ−(ξ) − Θ̂−k )(hk − ĥ−k )T p(ξ)dξ (22)

Σ−hh , E−[(hk − ĥ−k )(hk − ĥ−k )T ] =

∫
ξ
(hk − ĥ−k )(hk − ĥ−k )T p(ξ)dξ (23)

Here again, the expectation integrals in Eq. (21), Eq. (22), and Eq. (23) can be computed by suitable quadrature rules:

ĥ−k , E−[h(xk,Θ)] '
M∑

q=1

wq h(xk(ξq),Θ(ξq))︸              ︷︷              ︸
hq

(24)

Σθy , E−[(Θk − Θ̂k)(h(xk) − ĥ−k )T ] '
M∑

q=1

wq(Θk(ξq) − Θ̂−k )(hq − ĥ−k )T (25)

Σ−hh , E−[(h(xk) − ĥ−k )(h(xk) − ĥ−k )T ] '
M∑

q=1

wq(hq − ĥ−k )(hq − ĥ−k )T (26)
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Again we point out that hq represents computational measurements corresponding to simulation runs with input pa-236

rameter determined by ξq. Furthermore, one can update the polynomial expansion coefficients of Eq. (5) at the time237

measurement data becomes available, as described in Ref. [25]. More specifically, the posterior expected value of Θ238

at a specific time step k can be written in terms of the PC expansion coefficients:239

Θ̂+
k , E+[Θk] =

[
Θ+

pc1

]
(27)

where, Θ+
pc1

is the posterior value of the first column of the matrix Θpc. Similarly, assuming orthonormality of basis
functions φi(ξ)’s, the posterior covariance matrix of Θ can be written as:

Σk
+ , E+[(Θk − Θ̂

+
k )(Θk − Θ̂

+
k )T ] ∈ Rm×m, Σk

+(i, j) =

N∑
l=1

θ+il θ
+
jl , i, j = 1, · · · ,m (28)

where, θ+il is the posterior value of lth coefficient in the PC expansion of θi. Now, by combining Eq. (27) and Eq. (28)
with Eq. (14) and Eq. (15), we find

Θ+
pc1

(i) = Θ̂+
k (i), i = 1, 2, · · · ,m (29)

N∑
l=1

θ+il θ
+
jl = Σ+

k (i, j), i, j = 1, · · · ,m (30)

Eq. (29) provides values of the components of Θ+
pc1

, and Eq. (30) provides m2 equations for the remaining mN240

unknown coefficients. Depending on the order of the PC expansion and the dimension ofΘ, the resulting equations can241

be over-determined, properly determined, or under-determined. Different approaches must be used to solve Eq. (30),242

depending on the character of the matrix.243

4. Computation Challenges244

Accurate evaluation of the various expectation integrals defined in the previous section is a crucial task to compute245

accurate hazard maps. Several quadrature schemes exist in the literature to evaluate integrals, the most popular being246

Gaussian Quadrature Rules [27]. The Gaussian quadrature scheme involves deterministic points carefully selected247

to reproduce exactly the value of integrals of polynomials of given order. According to Gaussian quadrature, for248

1-dimensional integrals one requires M quadrature points to exactly reproduce th eintegral of a polynomial of degree249

2M − 1. In m-dimension space, common practice is to take the tensor product of 1-dimensional quadrature points,250

yielding Mm quadrature points. Even for a moderate-dimension system involving, say, 6 random variables, the number251

of points required to evaluate the expectation integral with only 5 points along each direction is 56 = 15, 625. This252

is a non-trivial number of points that might make the calculation of an integral computationally expensive, especially253

when the evaluation of the integrand at each point is, itself, an expensive procedure. The sparse grid quadratures,254

and in particular Smolyak quadrature, take the sparse product of one dimensional quadrature rules and thus have255

fewer points than the equivalent Gaussian quadrature rules, but at the cost of introducing negative weights, [26, 44].256

Fortunately, the Gaussian quadrature rule is not minimal for m ≥ 2, and there exists quadrature rules requiring fewer257

points in high dimensions [27].258

4.1. Conjugate Unscented Transform259

Recently, Adurthi et al. [5] have proposed non-product quadrature rules based on the Conjugate Unscented Trans-260

formation (CUT), which computes multi-dimension expectation integrals involving Gaussian and uniform pdf by261

constraining the evaluation points to lie on specially defined axes. These new sets of so-called sigma points are guar-262

anteed to exactly evaluate expectation integrals involving polynomial functions with significantly fewer points. We263

summarize the CUT methodology now, and refer the reader to [4–7] and Appendix A for further details.264

The CUT approach can be considered an extension of the conventional Unscented Transformation method that265

satisfies additional, higher order moment constraints. Rather than using tensor products as in Gauss quadrature, the266

CUT approach judiciously selects specific structures to extract symmetric quadrature points. Like Gauss quadrature,267
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this process is designed to exactly integrate polynomials of total degree 2M − 1 in m-dimensional space, with fewer268

than Mm points.269

To illustrate the CUT approach, consider the problem of approximating the expected value of a function f (x):270

E[ f (x)] =

∫
Ω

f (x)p(x)dx '
n∑

i=1

wi f (x(i)) (31)

where, x = [x1, x2, · · · , xm]T ∈ Rm and p(x) is either the uniform or Gaussian density function defined over the domain271

Ω ⊂ RN . Denote the cubature points as x(i) ∈ Ω, and wi > 0 as the corresponding scalar weights. Assuming that f (x)272

has a valid Maclaurin series given by273

f (x) =

∞∑
n1=0

∞∑
n2=0

· · ·

∞∑
nm=0

xn1
1 xn2

2 · · · x
nm
m

n1!n2! · · · nm!
∂n1+n2+···+nm f

∂n1 x1∂n2 x2 · · · ∂nm xm
(32)

the expectation of f (x) can be written as:274

E[ f (x)] =

∞∑
n1=0

∞∑
n2=0

· · ·

∞∑
nm=0

E[xn1
1 xn2

2 · · · x
nm
m ]

n1!n2! · · · nm!
∂n1+n2+···+nm f

∂n1 x1∂n2 x2 · · · ∂nm xm
(33)

Thus the problem of evaluating the expected value of f (x) is reduced to computing higher order moments of random275

vector x distributed according to the pdf p(x). Substitution of Eq. (32) into Eq. (31) leads to the expression276

n∑
i=1

wi f (x(i)) =

∞∑
n1=0

∞∑
n2=0

· · ·

∞∑
nm=0

(∑n
i=1 wi

∏m
k=1 xnk

(i,k)

)
n1!n2! · · · nm!

∂n1+n2+···+nm f (0)
∂n1 x1∂n2 x2 · · · ∂nm xm

(34)

Comparing Eq. (34) and Eq. (33) results in a set of algebraic equations known as Moment Constraint Equations:277

E[xn1
1 xn2

2 · · · x
nm
N ] =

n∑
i=1

wi

m∏
k=1

xnk
(i,k) (35)

Notice that the left hand side of this equation contains the moments of the input parameter density function, and the278

right hand side is a function of the unknown position of quadrature points. The CUT methodology involves finding279

quadrature points that satisfy Eq. (35) up to a desired order of moments. Assuming p(x) to be symmetric, the cubature280

points are chosen to lie symmetrically about appropriately defined directions:281

• Principal Axes: Generally in an m-dimensional cartesian space, there are m orthogonal coordinate axes centered282

at the origin which correspond to eigenvectors of the covariance of the input random variable. These axes are283

called principal axes which are denoted by σ. The corresponding point on these axes are shown as σ j, j =284

1, 2, · · · , 2m.285

• Conjugate Axes: Conjugate axes, denoted by cP (P ≤ m), are the axes constructed from all the combinations286

and sign permutations of the set of principal axes taken P at a time. These points are shown by cP
i , where287

i = 1, 2, · · · , 2P

(
m
P

)
.288

• Scaled Conjugate Axes: The remainder of the cubature points are found from the mth Scaled Conjugate axes,289

which are constructed from all the combinations with sign permutations of the set of principal axes such that in290

every combination exactly one principal axis is scaled by a scaling parameter h. These set of axes are labeled291

as sm(h), and the points are listed as sm
i (h) where i = 1, 2, · · · ,m2m.292

Table 1 presents one sample point on each of these directions in m dimensions. A schematic view of these points in 3293

dimensional space is given in Fig. 2.294



R. Madankan et al. / Journal of Computational Physics 00 (2013) 1–26 11

Table 1: Different types of CUT points defined in N-dimensional space

Type Sample Point Number of Points
σ (1, 0, 0, · · · , 0) 2N

cM (1, 1, · · · , 1︸      ︷︷      ︸
M

, 0, 0, · · · , 0︸      ︷︷      ︸
N − M

) 2M

(
N
M

)
sN(h) (h, 1, 1, · · · , 1) N2N

(a) (b)

Figure 2: Different types of cubature points in 3 dimensional cartesian space in different views

The next step is to select combinations of the points just defined. All the selected points that lie on the same set295

of symmetric axes should be equidistant from the origin and should have equal weights. For each selected point, two296

unknown variables, a weight wi and a scaling parameter ri are assigned. The moment constraints equations for the297

desired order are derived in terms of unknown variables ri and wi. Because of the symmetries of cubature points,298

the odd-order moment constraints equations are automatically satisfied, so the wi and ri are found by solving just the299

even order equations. Notice that different sets of cubature points can be found, depending on m and the order of300

the moment constraint equations. Appendix A employs the CUT procedure to compute 8th order quadrature points in301

4-dimensional space; the interested reader may consult [4, 5] for other illustrations.302

The CUT quadrature approach uses just a small number of points, relative to Gauss quadrature, to compute an303

integral with the same accuracy. Fig. 3 represents the number of quadrature points required, for 8th order accuracy,304

by different quadrature schemes (CUT, Gauss-Legendre, Clenshaw-Curtis and Sparse Grid), for a uniform random305

variable, as a function of the dimensionality of the random variable. From this figure, it is clear that the growth in the306

number of quadrature points with dimension is much smaller for the CUT method, especially compared to the Gauss-307

Legendre and Clenshaw-Curtis approaches. The CUT method requires fewer than half the number of quadrature308

points as the sparse grid Smolyak approach. As one specific example, 161 CUT quadrature points are required to309

satisfy 8th order moments in 4-dimensional space, but 6561 points are required for Clenshaw-Curtis quadrature, 625310

for Gauss-Legendre quadrature, and 385 for sparse grid quadrature.311

4.2. Other Challenges312

One other computational challenge can arise in the parameter estimation, namely operations with a large and per-313

haps poorly conditioned Kalman Gain matrix Kk in equation (16). To perform the necessary linear algebra operations,314

we use the state-of-the-art PETSc solver [45] together with good preconditioning. Block Jacobi and additive Schwartz315

preconditioning were used. Performance of the two preconditioners was comparable in terms of numbers of iterations316

required to obtain a specified residual, so we chose to use the less computationally expensive block Jacobi method317

for our test problem. Of course for different problems, other preconditioners might prove better. In general, matrix318

inversion is very sensitive to faulty data or other spurious artifacts, and steps should be taken to remove bad data319

whenever possible. Care should be exercised when data is suspect, to preclude erroneous forecasts.320
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Figure 3: Comparison of number of 8th order quadrature points required for different quadrature schemes, as a function of the dimension of the
random variable.

5. Numerical Experiments321

The performance of the proposed methodology for generating accurate hazard maps and for updating model pa-322

rameter estimates, is assessed using data from the April 2010 Eyjafjallajökull eruption in Iceland. The bent volcanic323

column model is used to generate initial ash cloud data for the puff VATD model [32], based on the Eyjafjallajökull324

eruption over the time period 14 − 16 April 2010. bent produces mass loading, plume height, and grain size dis-325

tribution, which is used in puff, given atmospheric winds and volcanic source conditions. Icelandic Meteorological326

Office (IMO) Keflavik radiosonde data from 14 April 00Z, where 00Z refers to midnight in Universal Time, Z (near327

the initiation of the eruption) was used to generate the atmospheric winds for bent. puff, together with a given328

windfield, tracks the propagation of ash from Iceland to Europe. puff can be run using one of several numerical329

weather prediction (NWP) windfields [46–49]. These NWP models are available at different levels of spatial and330

temporal resolution. In this case, puff uses global NCEP/NCAR Reanalysis windfields to propagate ash, using 6-hr,331

2.5◦ data. These wind fields assimilate observation wind data into model runs. Output from a deterministic puff332

model run consists simply of the position of the representative numerical particles; one can smooth this positions to333

determine a smoothed concentration field. The outputs are post-processed to extract other quantities of interest, such334

as maximum height of ash at a given geographical location. The top-height of ash is a useful quantity for the purpose335

of air traffic routing.336

Table 2: Eruption source parameters based on observations of Eyjafjallajökull volcano and information from other similar eruptions of the past.
Parameter Value range PDF Comment
Vent radius, b0, (m) 65-150 Uniform, + definite Measured from IMO radar image of summit

vents on 14 April 2010
Vent velocity, w0, (m/s) 45-124 Uniform, + definite Measured by infrasound [50] 6-21 May, when

MER similar to 14-18 April
Mean grain size, Mdϕ, ϕ 3.5-7 Uniform, ∈ R [51], Table 1, vulcanian and phreatoplinian. A.

Hoskuldsson, Eyjafjallajökull Eruption Work-
shop, 09/2010, presentation, ’Vulcanian with
unusual production of fine ash’.

σϕ, ϕ 0.5 − 3 Uniform, ∈ R [51], Table 1, vulcanian and phreatoplinian
Eruption temperature 1200 C Fixed [28]
Erupted water mass fraction 0.017 Fixed [28]
Eruption duration 3 hr Fixed [28]

All four volcano source parameters – vent radius b0, vent velocity w0, mean grain size Mdφ, and standard deviation337
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Table 3: Location 52N, 13.5E: conc is the puff computed absolute air concentration (in mg/m3) in a grid cell of size 0.5◦ × 0.5◦ × 2km at 1200hours
on 16th April, 2010 , and count is the number of puff particles in that cell

Number of ash particles height (m) conc. count height conc. count height conc. count

105 3000 7.4 × 10−5 28 5000 4.23 × 10−5 16 7000 - -
5 × 105 3000 1.17 × 10−4 221 5000 3.54 × 10−5 67 7000 - -

106 3000 1.12 × 10−4 405 5000 4.12 × 10−5 156 7000 - -
2 × 106 3000 1.12 × 10−4 884 5000 4.03 × 10−5 305 7000 - -
4 × 106 3000 1.09 × 10−4 1655 5000 4.10 × 10−5 3620 7000 1.32 × 10−7 2
8 × 106 3000 1.15 × 10−4 3471 5000 4.15 × 10−5 1256 7000 1.98 × 10−7 6

107 3000 1.10 × 10−4 4151 5000 3.99 × 10−5 1510 7000 2.91 × 10−7 11

of grain size σφ – are assumed to be uncertain, and the prior density functions for these parameters, based upon338

previous eruption studies, are listed in Table 2. The CUT quadrature scheme described above was used to produce339

initial ensembles of source parameters. In earlier work [28], it was shown that an 8th order quadrature scheme is340

sufficient for computing statistics of ash top-height. From Sec. 4.1, 161 CUT quadrature points were generated.341

Following runs of bent corresponding to CUT quadrature points, each bent output was then propagated through342

puff, which was then run for three days. The outputs from puff were then used to create a polynomial surrogate343

model of degree 4 for ash top-height. 50, 000 evaluations of ash top-height were evaluated using the surrogate, which344

were then used to compute the probabilistic hazard map described in Section 3.1.345

Meteosat-9 retrievals of ash-cloud height were used to validate the probabilistic hazard map methodology and346

to refine prior probability density functions. Volcanic ash was identified in the satellite data using the methodology347

described in [52] and [53]. The ash loading (mass per unit area) and ash cloud height were retrieved using an optimal348

estimation approach [54, 55]. The locations where satellite observed top-height is non-zero were used in the minimum349

variance estimation procedure to compute posterior mean and covariance for source parameters by making use of350

Eq. (14)-Eq. (16). From computed posterior mean and covariance, the polynomial chaos coefficients for source351

parameters are updated and hence, corresponding density functions, making use of the procedure listed in Section 3.2.352

5.1. Computing Probability of Ash top-height353

Like any Lagrangian model, the accuracy of the bent-puff model is greatly influenced by the number of ash354

particles. To understand the convergence of the approach proposed here, it is necessary to understand how the number355

of ash particles impact the output of puff. For this purpose, probabilistic hazard maps were computed corresponding356

to five different values of the number of ash particles: 4 × 106, 107, 2 × 107, 4 × 107, and 8 × 107. For all puff357

runs, the vertical position of ash particles is quantized in 2-km altitude levels. Table 3 represents the absolute and358

relative ash concentration at a particular location, for different altitudes and different number of ash particles used359

in one deterministic run of bent-puff. As expected, both the concentration and the ash top-height are significantly360

affected by the number of ash particles. The table shows that, by increasing the number of ash particles from 2 × 106
361

to 4 × 106, the maximum height of ash at location 52N, 13.5E increases from 5000 m to 7000 m. Figure Fig. 4 shows362

the processor time and estimates of memory required to complete a single run of the bent-puff model, as a function363

of the number of particles. From this plot, it is clear that the computational time increases exponentially with an364

increase in number of ash particles in a run. Here again the trade-off between desired accuracy and computational365

cost is evident. These results are consistent with prior studies performed on the convergence of puff output [56].366

Fig. 5 shows the probability of ash top-height being greater than or equal to specified threshold hthresh for a few367

specific locations and times, as a function of the number of ash particles. It appears that the probability values have368

converged for lower value of hthresh, but considerable fluctuations for hthresh = 5000 m and hthresh = 7000 m remain.369

This observation is consistent with the convergence of bent-puff model shown in Table 3. One surmises that these370

fluctuations can be attributed to the accuracy of the puff model rather than any aliasing error in the convergence of371

quadrature scheme.372

Fig. 6 shows the probabilistic hazard map consisting of probability of ash top-height being greater than or equal373

to hthresh = 3 km for different numbers of ash particles in bent-puff model, overlaid with satellite observed ash top-374

height greater than or equal to 3 km, on April 16th, 0600 hrs (54 hours after eruption). Fig. 7 shows the probability375

of ash top-height to be greater than or equal to hthresh = 5 km, overlaid with satellite observed ash top-height greater376
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Figure 5: Probability of ash top-height ≥ hthresh at different points on April 16th, 0600 hrs



R. Madankan et al. / Journal of Computational Physics 00 (2013) 1–26 15

(a) 107 ash particles (Change with respect to 80 million ash particles
= 1.36%)

(b) 2 × 107 ash particles (Change with respect to 80 million ash
particles = 1.13%)

(c) 4 × 107 ash particles (Change with respect to 80 million ash
particles = 0.96%)

(d) 8 × 107 ash particles

Figure 6: Probability of ash top-height ≥ 3 km versus satellite observed ash top-height ≥ 3 km on April 16th, 1200 hrs (60 hours after eruption).

than or equal to 5 km, again on April 16th, 0600 hrs. From these plots, one can conclude that the probabilistic hazard377

map calculations have converged with respect to number of ash particles used and satellite imagery consistently fall378

within most probable forecasted region.379

Fig. 8 shows the probability map of ash top-height exceeding 1 km overlaid with satellite observed ash top-height380

at six-hour interval for 16th April. Most of the satellite data lies within the high probability region, although the381

probable ash cloud footprint is quite large, owing to the large uncertainty in prior source parameters. Note also the382

predicted ash in the north-east corner of the image is not supported by satellite imagery; further study indicates this383

area was obscured by meteorological clouds.384

To compare the accuracy of the CUT quadrature scheme, the 8th order Clenshaw-Curtis (CC) quadrature scheme385

with 94 quadrature points is employed to compute probabilistic hazard maps. The convergence of the Clenshaw-386

Curtis quadrature scheme in computing the mean and standard deviation of the ash top-height has been studied in387

earlier work [28]. Fig. 9 shows the probability map of ash top-height exceeding 1 km overlaid with satellite observed388

ash top-height at six-hour intervals for 16th April. From Fig. 8 and Fig. 9, it is clear that probability maps computed389

with the help of CUT and CC quadrature schemes are indistinguishable. We conclude that the CUT methodology390

provides an order of magnitude computation savings without the loss of any accuracy.391

5.2. Refining Prior Source Parameters Distribution392

As just shown, due to the large uncertainty in source parameters, the uncertainty in the probable ash footprint is393

very high (see Fig. 8). This finding suggests we should re-compute the source parameter distributions making use394

of satellite observations. The procedure listed in Section 3.2 is used to compute posterior estimate for the source395

parameters and the corresponding probability density function, using satellite data from three different times (April396

16th at 0600 hrs, 1200 hrs, and 1800 hrs). Satellite observed ash top-heights are estimated to be accurate to within397

100 m intervals around the observed height, so the sensor noise νk is taken to be a zero-mean uniform density function398

over the interval [−100 100] m. Due to height quantization in the bent-puff model, ash top-height provided by399

bent-puff model is assumed to be polluted with zero-mean uniformly distributed random noise between −1000 m400
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(a) 107 ash particles (Change with respect to 80 million ash
particles = 1.25%)

(b) 2 × 107 ash particles (Change with respect to 80 million
ash particles = 1.10%)

(c) 4 × 107 ash particles (Change with respect to 80 million
ash particles = 0.97%)

(d) 8 × 107 ash particles

Figure 7: Probability of ash top-height ≥ 5 km versus satellite observed ash top-height ≥ 5 km on April 16th, 1200 hrs (60 hours after eruption).

(a) April 16th, 0000 hrs (b) April 16th, 0600 hrs

(c) April 16th, 1200 hrs (d) April 16th, 1800 hrs

Figure 8: Probability Maps for Ash Top-Height ≥ 1 km and corresponding satellite observed ash top-height.
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(a) April 16th, 0000 hrs (b) April 16th, 0600 hrs

(c) April 16th, 1200 hrs (d) April 16th, 1800 hrs

Figure 9: Probability Maps (obtained through Clenshaw-Curtis quadrature Scheme) for Ash Top-Height ≥ 1 km and corresponding satellite
observed ash top-height.

(a) Mean Ash Top-Height (b) Standard Deviation of Ash Top-Height

Figure 10: Mean and Standard deviation of Ash Top-Height on April 16th, 1200 hrs.
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Figure 11: Posterior Mean Estimates for Source Parameters versus number of ash particles.

and +1000 m. Thus Qk in Eq. (16) is taken to be 3.33×10−1km2 in our simulations. 4×107 ash particles were used in the401

bent-puff model to compute different expectation integrals involved in the calculation of posterior source parameter402

distributions. To reduce the potential source of numerical error, PETSc [45] with two level domain decomposition403

based algebraic preconditioning (block Jacobi or Additive Schwarz) is used to compute the inverse involved in the404

computation of Kk in Eq. (16).405

The prior mean and standard deviation of ash top-height are shown in Fig. 10. Fig. 11 shows the posterior mean406

of the source parameters computed through Eq. (14), versus the number of satellite images considered in calculations407

of posterior mean and covariance. The expected source parameter values converge as more and more observational408

data are made available. Fig. 12 shows the assumed prior source parameter distributions and the computed posterior409

distributions based on satellite imagery for all three time-intervals. As expected, the uncertainty in source parameters410

decreases after the assimilation of satellite imagery. Because vent radius and eruption velocity directly control mass411

eruption rate, thermal flux and therefore eruption plume height, the fact that the cloud top height estimated from412

satellite data changes these values is intuitive. The effect of the satellite data on the grain size distribution is less413

obvious, but nevertheless can be easily understood when one remembers that the particles are settling, and the settling414

is a function of grain size. The large increase in the standard deviation of the grain size distribution would furthermore415

seem to be a reflection that the posterior estimate requires a greater number of fine-grained particles that settle only416

slowly.417

Finally, the quality of the source parameter estimates is assessed by performing a single deterministic run of418

bent-puff corresponding to the estimated posterior mean of source parameters and comparing it against satellite419

observed ash top-height. Fig. 13(a) shows the ash top-height forecast at time 1200 hrs on April 16th using posterior420
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Figure 12: Prior and posterior estimate of source parameters.
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estimates for source parameters obtained through incorporating satellite observation available at 600 hrs on April421

16th. Similarly, Fig. 14(a) shows the ash top-height forecast at time 1800 hrs, obtained through incorporating satellite422

observations available at 600 hrs and 1200 hrs. Fig. 13(b) and Fig. 14(b) show the satellite observed ash top-height423

at 600 hrs and 1200 hrs, respectively. These results indicate that the forecast of ash cloud top-height based on the424

posterior estimate of source parameters match very well with the observed satellite data. The observed and computed425

ash top-height differ from each other with an accuracy of ±2 km, which corresponds to the numerical accuracy of426

bent-puff model.427

(a) bent-puff forecast (b) Satellite Observation

Figure 13: Comparison of Forecast of Ash top-height and Satellite Observation on April 16th, 1200 hrs.

(a) (b)

Figure 14: Comparison of Forecast of Ash top-height and Satellite Observation on April 16th, 1800 hrs.

5.3. Validation of Posterior Estimate of Source Parameters428

The prior values for the source parameters used in this study were estimated based on the limited data that was429

available immediately following the eruption, and provided only a rough guide to true values, but nevertheless reflect430

the type of data that may be available at the time of eruption. Since the eruption, further studies have been completed431

and better estimates of the source parameters have become available. We compare these independent estimates of432

source parameters with the posterior mean estimates obtained here and reported in Table 4.433
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The vent radius was estimated from an airborne IMO radar image of the Earth’s surface in the summit region taken434

on 14 April 2010 at 1030 UTC during the paroxysmal phase of the eruption, based on our own image analysis. Radar435

imagery is useful for this because of the ability of radio waves to penetrate eruption clouds. We originally assumed436

three of the darkest areas on the image to be craters. Later image guidance provided by the Icelandic Institute of Earth437

Sciences (http://earthice.hi.is/eruption eyjafjallajokull 2010), however, suggests the presence of five438

roughly elliptical craters at that time, ranging in equivalent circular radius from 21 to 119 m (Table 4). Assuming that439

pressure balance in the plume as it exited the crater(s) developed rapidly based on the lack of atmospheric shocks in440

videography, and that crater diameter reflects pressure balance, the posterior estimate of 87 m eruption radius suggests441

that one of the two larger craters was active during the paroxysmal phase of the eruption on the morning of 14 April.442

This result is consistent with observations from other eruptions that vent activity migrates with time, and that the443

active vent during the most vigorous phase of an eruption should be that which allows the greatest flux. Measures of444

the initial velocity are now available for the initial, vigorous 14–18 April phase of the eruption based on a video of the445

erupting plume that was analyzed using a vortex tracking algorithm. The velocity near the vent was found to correlate446

with the relative vigor of the discharge from the volcano and plume height, and estimated to be 20–30 m/s on 17 April447

[57]. Given that this measurement was made slightly above the vent on the outer margin of the plume, in a rapidly448

decelerating section of the plume, it is probable that this observed velocity is slightly lower than the true exit velocity.449

The observed velocity of 20–30 m/s slightly above the vent thus is in accord with the mean value for the posterior450

mean exit velocity of 54m/s, which is on the lower end of the prior range. The grain size distribution was studied451

mainly for the second intensive phase of the eruption (early May), during which time activity was similar to that seen452

in the early phase from 14–18 April. From these observations, it was found that the mean grain size, Mdϕ, changed453

from −0.9 to 4.5ϕ and the standard deviation, σϕ, from 0.7 to 2.6 ϕ with distance from the vent for deposits from the454

cloud found on land [58]. In fact, at a distance of 44km from the vent and for the next 12km, the observations shown a455

quasi-constant mean size of 4.5ϕ and a σϕ of 2.6. This distance is within one computational cell from the source, and456

therefore grain sizes measured there should represent initial conditions. Furthermore, once the size of grains falling457

to the ground becomes constant, it can be assumed that the depositing grain size reflects the grain size of particles left458

in the cloud. If these assumptions are valid, the posterior estimate of the initial grain size distribution of 4.96 ± 2.62ϕ459

correlates well with the measured value of 4.5 ± 2.6ϕ.460

Table 4: Comparison of prior, posterior and new estimates of eruption source parameters based on observations of Eyjafjallajökull eruption and
simulations.

Parameter Prior range Posterior mean New Reference
Vent radius, b0 (m) 65-150 87 21, 65, 119, 31, 32 Remeasured based on

better image guidance
Vent velocity, w0 (m/s) 45-124 54 > 20 − 30 [57]
Mean grain size, Mdϕ (ϕ) 3.5-7 4.96 4.5 [58]
σϕ, ϕ 0.5 − 3 2.62 2.6 [58]

Note that the grain size unit of geology, ϕ, is defined as: ϕ = − log2(D/D0), where diameter, D, is measured in mm, and reference diameter
D0 = 1 mm.

6. Conclusion461

In this article, an end-to-end approach to probabilistic forecasting of volcanic ash transport is outlined. Recently462

developed CUT quadrature method is used to propagate parameter uncertainty through the bent-puff model. The463

CUT ensembles are then used to construct a polynomial chaos surrogate model which is then sampled to provide464

probabilistic hazard map for ash top-height. Furthermore, the CUT method in conjunction with the minimum variance465

unbiased linear estimation approach is used to fuse bent-puff model forecasts and satellite observational data, to find466

a posterior estimate of source parameters and to update coefficients of polynomial chaos surrogate model. The updated467

polynomial chaos surrogate model is used to obtain posterior distribution of source parameters. This methodology468

is implemented and validated using the 2010 Eyjafjallajökull volcanic eruption as a benchmark problem. Numerical469

simulations illustrate the computational efficiency of using the CUT method. The source parameter estimation method470

proposed here provides not only mean estimates, but also a statistical confidence bound for that mean. Validation of471
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the simulation results shows that the posterior estimate of source parameters corresponds well with values obtained472

in other references. Hazard maps based on our approach accurately forecast the location of ash, when tested against473

satellite data.474

In this work, we have used the NOAA NCEP Reanalysis 1 wind field to compute the hazard map. The Reanalysis475

windfield uses observation data to produce a “best” known realization of the wind field consistent with data. Uncer-476

tainty introduced into the wind forecast from the NWP model is significant, and incorporating this uncertainty into an477

enhanced model ensemble is the subject of ongoing work.478

Finally, it is important to note that the overall framework for probabilistic model forecast and source estimation479

described here is not dependent on the choice of VATD or eruption model; other models can easily be used to generate480

column and plume outputs that are used in the subsequent uncertainty analysis.481
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Appendix A. 8th order CUT Quadrature Points487

In this Appendix, the procedure to obtain 8th order Conjugate Unscented Transform (CUT) quadrature points for488

a uniform pdf in 4-dimensional space is explained in detail. According to the procedure explained in Section 4.1, the489

main steps can be described as follows:490

• The first set of points are selected on the principal axis. Note that there will be 2N = 8 points on principal491

axes which all have the same distance from the origin and their weights are all the same, i.e. X(1)
i = r1σi and492

W (1)
i = w1.493

• The second set of points are contained to lie on the 4th-conjugate axis. There will be 24
(

4
4

)
= 16 points on494

4th-conjugate axis which all have the same distance from the origin, i.e. X(2)
i = r2c4

i . Also, they all will have495

equal weight w2.496

• The third set of points are assumed to lie on the 2nd-conjugate axis. Note that there exist 22
(

4
2

)
= 24 points497

on 2nd-conjugate axis. Similar to previous points, these points are also equidistant from the origin and have the498

same weight, i.e. X(3)
i = r3c2

i and W (3)
i = w3.499

• Like the second set of points, the fourth set of points are assumed to lie on the 4th-conjugate axis. Hence, there500

will be another set of 24
(

4
4

)
= 16 points on 4th-conjugate axis. But, they will have different distance from the501

origin, i.e. X(4)
i = r4c4

i , where r4 , r2. As well, all the X(4)
i ’s are considered to have the same weight w4 , w2.502

• The other set of points are assumed lie on the 3rd-conjugate axis such that X(5)
i = r5c3

i and W (5)
i = w5. Note that503

there will be 23
(

4
3

)
= 32 points on 3rd-conjugate axis.504

• The last set of points are located on 4th- scaled conjugate axis, i.e. X(6)
i = r6sN

i (h) and W (6)
i = w6, where the505

scaling parameter h needs to be appropriately selected.506

There will be totally 161 quadrature points (those just described plus the origin) whose locations can be determined507

by finding the values of r j’s ( j = 1, 2, · · · , 6). To find the values of w0, r j’s and w j’s ( j = 1, 2, · · · , 6), one needs to508

construct and solve the moment constraint equations. Due to the symmetrical properties of the selected points, the509

odd order central moments are automatically satisfied, and one only needs to satisfy the even order central moments:510 

E[x2
i ] = 1

3 , E[x4
i ] = 1

4 , E[x2
i x2

j ] = 1
9

E[x6
i ] = 1

7 , E[x4
i x2

j ] = 1
15 , E[x2

i x2
j x

2
k] = 1

27

E[x8
i ] = 1

9 , E[x6
i x2

j ] = 1
21 , E[x4

i x4
j ] = 1

25

E[x4
i x2

j x
2
k] = 1

45 , E[x2
i x2

j x
2
k x2

l ] = 1
81 ,

∫
Ω

p(x1, x2, x3, x4)dx = 1

(A.1)

The last equation ensures the unity constraint and Ω = [−1,+1]4 ⊂ R4. Eq. (A.2) shows the moment constraints511

equations in terms of selected conjugate unscented points and their corresponding weights. Eq. (A.2) is a set of 12512

nonlinear equations with 13 unknowns, viz. w0, w j’s and r j’s ( j = 1, 2, · · · , 6).513
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

2r2
1w1 + 16r2

2w2 + 12r2
3w3 + 24r2

4w4 + 48r2
5w5 + 16h2r2

5w5 + 16r2
6w6 = 1

3

2r4
1w1 + 16r4

2w2 + 12r4
3w3 + 24r4

4w4 + 48r4
5w5 + 16h4r4

5w5 + 16r4
6w6 = 1

5

16r4
2w2 + 4r4

3w3 + 16r4
4w4 + 32r4

5w5 + 32h2r4
5w5 + 16r4

6w6 = 1
9

2r6
1w1 + 16r6

2w2 + 12r6
3w3 + 24r6

4w4 + 48r6
5w5 + 16h6r6

5w5 + 16r6
6w6 = 1

7

16r6
2w2 + 4r6

3w3 + 16r6
4w4 + 32r6

5w5 + 16h2r6
5w5 + 16h4r6

5w5 + 16r6
6w6 = 1

15

16r6
2w2 + 8r6

4w4 + 16r6
5w5 + 48h2r6

5w5 + 16r6
6w6 = 1

27

2r8
1w1 + 16r8

2w2 + 12r8
3w3 + 24r8

4w4 + 48r8
5w5 + 16h8r8

5w5 + 16r8
6w6 = 1

9

16r8
2w2 + 4r8

3w3 + 16r8
4w4 + 32r8

5w5 + 16h2r8
5w5 + 16h6r8

5w5 + 16r8
6w6 = 1

21

16r8
2w2 + 4r8

3w3 + 16r8
4w4 + 32r8

5w5 + 32h4r8
5w5 + 16r8

6w6 = 1
25

16r8
2w2 + 8r8

4w4 + 16r8
5w5 + 32h2r8

5w5 + 16h4r8
5w5 + 16r8

6w6 = 1
45

16r8
2w2 + 64h2r8

5w5 + 16r8
6w6 = 1

81

w0 + 8w1 + 16w2 + 24w3 + 32w4 + 64w5 + 16w6 = 1

(A.2)

To find a unique solution w0, w j’s and r j’s, minimize the error for this system. Table A.5 represents the values for514

ri’s, wi’s obtained by solving Eq. (A.2).

Table A.5: values of ri’s, wi’s, and h, obtained by solving Eq. (A.2)

r1 0.9185985004650354 w1 0.008062125720404502
r2 0.4056290098577023 w2 0.014595344864200561
r3 0.7897970163891953 w3 0.013047011752780219
r4 0.918231359082217 w4 0.001790784328179888
r5 0.5610319682295122 w5 0.004699572845907843
r6 0.8770580193070292 w6 0.0006502632426480917
h 1.7

w0 0.02036722182060191

515
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