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Abstract. In this research, the effects of data measurement on source
parameter estimation are studied. The concept of mutual information
is applied to locate the optimal location for each sensor to improve the
accuracy of the overall estimation process. For validation purposes, an
advection - diffusion simulation code, SCIPUFF (Second-order Closure
Integrated PUFF) is used as a modeling testbed to study the effects
of using dynamic data measurement. Bayesian inference framework is
utilized to perform source parameter estimation using stationary and
mobile sensor networks, where in mobile sensors, the proposed approach
of Dynamic Data Monitoring is used to locate mobile data observation
sensors. As our numerical simulations show, using dynamic data moni-
toring leads to a considerably better estimate of the source parameters,
while just using fewer sensors, than the stationary sensors case, or other
alternative approaches.

1 Introduction

Emission of toxic material clouds from sources, such as industrial plants, vehicu-
lar traffic, deliberate toxic releases, and volcanic eruptions is one of the potential
threats to environment and human society. With increasing number of instances
of toxic material release, there is tremendous interest in precise source charac-
terization and generating accurate hazard maps of toxic material dispersion for
appropriate disaster management. Different types of algorithms have been pro-
posed to characterize source parameters in plume dispersion phenomenon. Most
of these algorithms can be divided into two major categories: optimization based
methods and probabilistic methods. A comprehensive review about optimization
and probabilistic based methods for source characterization in plume dispersion
phenomenon, is performed by Zheng et al. [1] and Rao [2].

There is no doubt that proper sensor placement is intimately tied to the
performance of the source estimation and model uncertainty characterization.
Poor data measurements caused by sparse or scattered sensors over the domain
of interest results in a poor estimate of source location. Hence finding optimal
location of the sensor is very important for source parameter estimation. Due
to dynamics of the plume dispersion phenomenon, it is much more efficient to



apply mobile sensors, instead of static sensors for data monitoring purposes.
Different strategies have been suggested to determine the optimal path of the
mobile sensors for source parameters characterization. Earlier works in this area
can be categorized as Chemotaxis [3], Anemotaxis [4], and Fluxotaxis [5].

In chemotaxis approach [3], mobile sensors follow the concentration gradient.
Therefore, the direction of the largest concentration is the goal direction for the
chemotaxis. In anemotaxis strategy [4], mobile sensors always move upstream
while they locate inside the plume, hence the upstream is the goal direction for
mobile sensors. With fluxotaxis approach [5], the mobile sensors compute the
amount of dispersal material flux passing through virtual surfaces formed by
neighboring sensors. Where, each individual sensor independently calculates the
amount of local material flux, relative to the current position of its neighbors.

Even though, each of above approaches has its own advantage and applica-
tion, but the major drawback of aforementioned approaches lies in the possibility
of being trapped in local maxima and plateaus of the concentration field.

Besides aforementioned methods, recently multiple researches have been done
on the field of optimal sensor placement, based on information theory. Choi et al.
[6] studied continuous motion planning of mobile sensors for Informative fore-
casting in presence of linear time varying systems and Gaussian uncertainty.
Bourgault et al. [7] suggested a robotic exploration approach based on maximiz-
ing mutual information, while linearizing the dynamics and sensor model and
assuming Gaussian uncertainty involved in the process.

Optimal sensor placement is also widely used in target tracking problem
[8,9,10]. For instance, MartiNez et al. [9] applied optimal sensor placement and
motion coordination of mobile sensor networks to tackle target tracking prob-
lem. This is achieved by maximizing the Fisher Information matrix, or equiv-
alently minimizing the associated Cramer-Rao lower bound of parameter esti-
mates. Tharmarasa et al. [10] studied the problem of selecting a small subset
of the available sensors in a large network of sensors in order to track multiple
targets. A search scheme based on combination of optimization methods and
Cramer-Rao lower bound was used to perform this task. The major drawback of
these works is that Fisher Information matrix usually consists of the parameter
which is to be estimated. Hence, an estimate of unknown parameters is used dur-
ing maximization of Fisher Information matrix. Williams et al. [11] studied the
problem of choosing optimal subset of sensors from a stationary sensor network,
in presence of linear model dynamics and linear sensor model, while minimizing
communication cost. The major drawback of this work is that it doesn’t con-
sider any dynamic for applied sensors. Hence, a large stationary sensor network
is needed (while a small portion of them is used at each time) to assure the
performance of proposed approach. As well, linearity assumptions in dynamic
model and sensor model restrict applicability of this method. In a research by Ju-
lian et al. [8], an information theoretic framework was presented for distributive
control of a set of mobile robots. The basic idea of this work is to move applied
mobile robots along gradient of mutual information to maximize information
collection. The major drawback of this approach is that it may not be effective



in the case that initial positions of robots are far way from regions of interest
(local optimality). Also, importance sampling techniques were used to calculate
gradient of mutual information, which could result in computational delay. Hoff-
mann et al. [12] presented a control approach for mobile sensor networks, based
on maximizing mutual information. In detail, he used a particle filter framework
and Monte Carlo integration method for evaluation of mutual information. Also,
an iterative approach was used at each time step to find optimal control signal
for each mobile sensor. The major benefit of proposed approach is that applied
particle filter framework makes it possible to directly use the proposed method
in presence of possible non-Gaussian uncertainty and nonlinear dynamic and/or
observation models. However, using Monte Carlo integration while evaluating
mutual information can reduce its computational performance. Another draw-
back in proposed method is that proposed control approach should be solved at
each time step iteratively, which could result in computational cost.

The key idea of this paper is to optimally allocate data monitoring sen-
sors over the spatial domain of interest such that the uncertainty involved in
source parameter estimates is minimized. This has been achieved by maximizing
the mutual information between the model output and data measurements. A
dynamic programming based approach is used to maximize the mutual informa-
tion between uncertain parameters and observational data. As it will be shown,
proposed approach expedites the convergence of estimation process and avoids
possible local optimalities while finding mobile sensor locations by maximizing
the mutual information, rather moving along its gradient. In other words, pro-
posed approach moves the mobile sensors toward the plume, even though the
sensors are initially located far from the plume area. Along proposed approach
for optimal sensor placement, a combination of generalized Polynomial Chaos
(gPC) and Bayesian inference is used for data assimilation process which allows
us to apply our method in presence of nonlinear dynamics and sensor model and
non-Gaussian uncertainties, without using any Monte Carlo sampling. As well,
a set of recently developed quadrature points, named as Conjugate Unscented
Transform points [13,14,15,16], are used to alleviate the computational complex-
ities associated with evaluation of mutual information, uncertainty propagation,
and estimation process.

Outline of this article is as follows: first, mathematical description of the prob-
lem is presented in section 2 and overall perspective of the proposed method-
ology for estimation process is described in section 3. In section 4, proposed
mathematical framework for uncertainty quantification is presented. Next, ap-
plied data assimilation approach for parameter estimation is briefly described
in section 5. Mathematical details of the dynamic data monitoring for optimal
sensor placement is explained in section 6. Numerical simulations are then pre-
sented in section 7 to demonstrate the performance of the proposed approach.
Finally, conclusion is presented in section 8.



2 Problem Statement

The plume dispersion phenomenon can be modeled as the following discrete
model:

xk+1(Θ) = f(xk,Θ) (1)

where, xk ∈ Rn denotes concentration of pollutant material at time step tk
and Θ ∈ Rm represents source parameters of dynamical model that are as-
sumed to be uncertain with a given prior probability p(Θ). Note that in Eq. (1)
the concentration xk is a function of spatial position (lat, lon, z), i.e. xk(Θ) ≡
xk(lat, lon, z,Θ).

In addition, assume that some observation of concentration xk is available
at some specific spatial locations over the domain, i.e.

zk(Θ,xk) = h(xk,Θ, νk) (2)

where, zk ∈ Rb is the observation vector at time step tk and h(.) is the observa-
tion operator which can be nonlinear. True value of concentration xk is polluted
with some noise νk. Note that dimension of observation vector is generally much
smaller than the dimension of xk, i.e. b� n. Also, like concentration xk, observa-
tion zk is a function of spatial position (lat, lon, z), i.e. zk(Θ) ≡ zk(lat, lon, z,Θ)

Our final goal is to precisely estimate source parameter Θ, given some obser-
vations of concentration. The performance of this estimation process crucially
depends on the spatial position of observations in hand. In other words, using
observations from different spatial locations can result in different estimates for
source parameters Θ. Hence, the primary focus of this paper is to develop a
mathematical framework to find the optimal locations of sensors for making
efficient observations so as to enhance the data assimilation process.

3 Methodology

Proposed approach in this paper consists of three different components that are
combined together to perform the task of source parameter estimation. These
components consist of i) Uncertainty Quantification (UQ), ii) Dynamic Data
Monitoring (DDM), and iii) Data Assimilation (DA). Schematic view of whole
estimation process is shown in Fig. 1. As shown in Fig. 1, estimation process
starts with a given uncertainty in source parameters of a dispersion phenomenon.
The first step to perform the estimation is to quantify the effect of uncertain
source parameters on spatial-temporal distribution of concentration of dispersive
material. This is performed by propagation of a set of quadrature points through
the numerical model. Weighted average of propagated quadrature points are then
used to determine prior statistics of dispersive material (e.g. mean and covari-
ance) over the spatial domain at a given time. Precise approximation of prior
statistics is crucial to ensure the performance of estimation process. Hence, uti-
lizing an appropriate and efficient set of quadrature points is of high importance.
In section 4, the methodology for UQ is discussed in further detail .



Besides precise quantification of uncertainty, having useful measurement data
is also highly important to ensure accurate source parameter estimation. DDM
is utilized to perform this task during the estimation process. The key goal of
DDM is to optimally allocate a set of mobile sensors (Unmanned Aerial Vehicles)
such that measurement of better data is guarantied at each time step. This is
achieved by maximizing the mutual information between model predictions and
observed data, given a set of kinetic constraints on mobile sensors. Dynamic
programming [17][18] is used to solve this optimization problem. This will result
in a set of control signals that are applied to each mobile sensor at each time
step tk and determine the optimal locations for data monitoring sensors. Detailed
explanations about DDM are presented in section 6.

Finally, obtained prior statistics from UQ and observed data from DDM are
combined together in a Bayesian inference framework to complete the estimation
process. This results in posterior value for statistics of source parameters esti-
mates. These posterior statistics are then used to approximate posterior distri-
bution of source parameters by using a polynomial chaos methodology. Detailed
information about DA is presented in section 5.
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Fig. 1. Schematic view of the source parameter estimation process



4 Uncertainty Quantification

Method of quadrature points is utilized to perform the task of uncertainty quan-
tification. In this method, a set of intelligently selected points will be propagated
through the dynamical model and statistics of the output are then determined
by weighted average of model outputs. In fact, method of quadrature points can
be viewed as a MC-like evaluation of system of equations, but with sample points
selected by quadrature rules.

To explain this in more detail, let x(lat, lon, z,Θ, t) ∈ Rn represent the
concentration of pollutant material at a given spatial point (lat, lon, z) and
time t. Note that x is a function of uncertain model parameter vector Θ =
[θ1,θ2, · · · ,θm]T ∈ Rm. The parameter vector Θ contains source parameters
like source location, total mass of pollutant material, etc. Θ is assumed to be
time invariant and function of a random vector ξ = [ξ1, ξ2, · · · , ξm]T ∈ Rm
defined by a pdf p(ξ) over the support Ω.

Now, kth order moment of model output x, at a given point (lat, lon, z) on
the domain and a specific time t can be written as

E [xk(lat, lon, z,Θ, t)] =

∫
ξ

xk(lat, lon, z,Θ, t)p(ξ)dξ '

M∑
q

wqx
k(lat, lon, z,Θ(ξq), t), k = 1, 2, · · · (3)

where, M denotes total number of applied quadrature points and Θ(ξq) ∈ Rm×1
represents qth quadrature point, generated based on applied quadrature scheme.
Similarly, kth order central moments of concentration at each point (lat, lon, z)
can be evaluated by shifting the quadrature points by the computed mean and
then using Eq. (3).

Different types of quadrature rules like classical Gaussian quadrature rule
can be used to evaluate the integral in Eq. (3). The classic method of Gaussian
quadrature exactly integrates polynomials of 1-Dimension up to degree 2M + 1
with M + 1 quadrature points. Generally, in an n-dimensional parameter space,
the tensor product of 1-dimension quadrature points is used to generate quadra-
ture points. As a consequence of this, the number of quadrature points increases
exponentially as the number of input parameters increases. Hence, using more
efficient quadrature schemes, which doesn’t exponentially

Herein, we have utilized Conjugate Unscented Transform (CUT) recently
developed by Nagavenkat et al. [14,15,16], to overcome this drawback of regular
quadrature points. CUT points are efficient in terms of accuracy while integrating
polynomials and yet just employ a small fraction of the number of points used
by the traditional Gaussian quadrature scheme. Fig. 2 represents the number
of 8th order quadrature points required by different quadrature schemes (CUT,
Gauss-Legendre, Clenshaw-Curtis and Sparse Grid) for a uniformly distributed
random vector versus the dimensionality of the random vector. From this figure,
it is clear that the growth of number of quadrature points with increase in



dimensionality according to the CUT methodology is much lower as compared
to the Gauss-Legendre and Clenshaw-Curtis. Furthermore, it is apparent that the
CUT methodology requires less than one half of quadrature points as required
by the sparse grid Smolyak approach. For example, 59 CUT quadrature points
are required to satisfy 8th order moments in 3-dimensional space as compared to
165 Sparse Grid quadrature points, 125 Gauss-Legendre quadrature points and
729 Clenshaw-Curtis quadrature points. Hence, the CUT methodology can be
very useful in reducing the number of numerical model runs which needs to be
performed for accurate computation of prior statistics.
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Fig. 2. Comparison of number of 8th order quadrature points required according to
different quadrature scheme versus dimension of random variable.

5 Data Assimilation

The purpose of data assimilation is to fuse the information provided by the
model forecasts and sensor observations to correct and refine the distribution of
the source parameters and to improve our level of confidence about the uncertain
parameters.

This problem can be described as finding the posterior statistics of the pa-
rameter vector Θ = [θ1,θ2, · · · ,θm]T ∈ Rm, given a set of measurement data
Z = {z1, z2, · · · , zN}, where N denotes the total number of time steps where
measurement data is available. Using Bayes’ theorem, posterior distribution of
Θ can be written as:

p(Θ|Z) =
p(Θ)p(Z|Θ)

p(Z)
(4)



where, p(Θ) is the prior distribution of parameter Θ, p(Z|Θ) is the likelihood of
measurements given the parameter, and p(Z) is the probability density function
of measurements Z, which is equal to:

p(Z) =

∫
Θ

p(Z|Θ)p(Θ)dΘ = EΘ{p(Z|Θ)} (5)

Now, one can compute the posterior statistics of Θ by multiplication of ap-
propriate functions of Θ in Eq. (4) and integrating with respect to Θ [19]. For

instance, posterior mean of Θ, denoted by Θ̂+, can be computed as:

Θ̂+ = EΘ{Θ} =

∫
Θ
Θp(Θ)p(Z|Θ)dΘ

EΘ{p(Z|Θ)}
=
EΘ{Θp(Z|Θ)}
EΘ{p(Z|Θ)}

(6)

Posterior second order moment of Θ, denoted by Σ+, can also be computed as:

Σ+ =

∫
Θ

ΘΘT p(Θ|Z)dΘ =
EΘ{ΘΘT p(Z|Θ)}
EΘ{p(Z|Θ)}

(7)

Note that CUT quadrature points are used to evaluate the expected values
in Eq. (6) and Eq. (7). i.e.

EΘ{Θp(Z|Θ)} '
Nq∑
q=1

wqΘ(ξq)p(Z|Θ(ξq)) (8)

EΘ{ΘΘT p(Z|Θ)} '
Nq∑
q=1

wqΘ(ξq)ΘT (ξq)p(Z|Θ(ξq)) (9)

EΘ{p(Z|Θ)} '
Nq∑
q=1

wqp(Z|Θ(ξq)) (10)

where, Θ(ξq) represents the qth quadrature value of the parameter vector Θ,
generated according to p(Θ)., and wq is the corresponding weight of quadrature
point Θ(ξq).

5.1 Computation of Posterior Probability of Source Parameters

The posterior statistics obtained from Bayesian update can be used to approxi-
mate the posterior distribution of parameter Θ. This can be achieved by making
use of Generalized Polynomial Chaos (gPC) Theory [20,21].

Based on the gPC theory, uncertain system parameter Θ can be approxi-
mated as a linear combination of basis functions, φk(ξ), which span the stochas-
tic space of random variables ξ = [ξ1, · · · ξm]T :

θi(ξ) =

L∑
k=0

θikφk(ξ) (11)



The coefficients θik are obtained by making use of the following normal equation:

θik =
E [θi(ξ)φk(ξ)]

E [φk(ξ)φk(ξ)]
(12)

Note that the integrals involved in Eq. (12) can be evaluated using quadrature
scheme.

E [φk(ξ), φk(ξ)] '
M∑
q=1

wqφ
2
k(ξq) (13)

E [θi(ξ), φk(ξ)] '
M∑
q=1

wqθi(ξq)φk(ξq) (14)

Given posterior statistics of parameter Θ, one can update the polynomial
expansion coefficients of Eq. (11) as described in [19]. This results in a set of
nonlinear algebraic equations which can be solved to find posterior coefficients
of gPC expansion of Θ:

θ+i1 = Θ̂+
i , i = 1, 2, · · · ,m (15)

L∑
k=0

θ+
ik
θ+
jk

= Σ+(i, j), i, j = 1, · · · ,m (16)

Notice that Eq. (15) directly results in values of Θ+
pc1

components, while Eq. (16)

provides m2 equations for remaining mL unknown coefficients. Depending on or-
der of applied PC expansion and dimension of Θ, obtained set of equations can
be over determined, determined, or under determined. Different approaches like
nonlinear least square method can be used to solve Eq. (16) in case of over
determined set of equations, while for under determined set of equations, regu-
larization techniques can be used to find a solution for the posterior coefficients
of polynomial expansion.

6 Dynamic Data Monitoring: Methodology

The major role of DDM module is to optimally locate a set of mobile sensors
such that measurements with more information content are sought at each time
step. Optimal location of each mobile sensor at each time step can be achieved
by maximizing the mutual information between model predictions and observed
data. In the following, we first explain the concept of mutual information and ap-
plied mobile sensor models. Then the mathematical details for optimal allocation
of mobile sensors are presented.

Mutual Information as a measure for Sensor performance

According to information theory, the mutual information between source param-
eter Θ and measurement z can be written as, [22],



I(Θ; z) =

∫
z

∫
Θ

p(Θ, z) ln

(
p(Θ, z)

p(Θ)p(z)

)
dΘdz (17)

Using Bayes’ rule, p(Θ, z) can be written as

p(Θ, z) = p(Θ|z)p(z)

Hence I(Θ; z) will be equal to:

I(Θ; z) =

∫
z

∫
Θ

p(Θ|z)ln

(
p(Θ|z)p(z)

p(Θ)p(z)

)
dΘ︸ ︷︷ ︸

DKL(p(Θ|z))||p(Θ)

p(z)dz (18)

or,
I(Θ; z) = Ez[DKL (p(Θ|z))||p(Θ))] (19)

Hence, mutual information can be interpreted as the average Kullback-Leiber
distance between prior pdf p(Θ) and posterior pdf p(Θ|z). Hence, by maximizing
mutual information one inherently maximizes the difference between prior and
posterior distributions of parameter Θ, thus leading to a better measurement
and estimate.

UAV model

We assume a set of Unmanned Aerial Vehicles (UAV) are used for data obser-
vation. Each of the UAVs is equipped with a chemical sensor to measure the
concentration of pollutant material and the dynamic model of each of the UAVs
is given as:

svk+1 = F (svk, u
v
k), v = 1, 2, · · · , Nu (20)

where Nu is total number of UAVs and k denotes kth time step. Also, initial
condition of vth UAV is assumed to be given as sv0. The state of UAV, svk,
consists of (x, y, z) components of position and heading angle. The UAVs are
modeled by the following discrete equationss1s2

λ


k+1

=

s1s2
λ


k

+

ulonk cos(λk +
πuλk
2 )

ulatk sin(λk +
πuλk
2 )

πuλk
2

 (21)

where (s1, s2)k is (lat, lon) coordinate of each UAV on spatial domain and λk
represents heading angle of the UAV at time tk. Control input of each UAV is
composed of four different signals, i.e.

uk = [ulonk , ulatk , uλk ]T (22)

In above equation, ulonk and ulatk , determine displacement of UAV in longitude
and latitude directions, respectively; and uλk determines heading angle for the



UAV. In here, we assumed that ulatk = ulonk ≡ uhk . Hence, our simplified model
will be written ass1s2

λ


k+1

=

s1s2
λ


k

+

uhk cos(λk +
πuλk
2 )

uhk sin(λk +
πuλk
2 )

πuλk
2

 , uk = [uhk , u
λ
k ]T (23)

It is assumed that uλk takes one of the following discrete values:

uλk =



−1, move toward south

0, move toward east

1, move toward north

2, move toward west

3, ss+1 = sk

(24)

As mentioned in Eq. (24), different values of uλk determine the direction of the
UAV at each time step tk.

6.1 Optimal Sensor Placement

Our objective is to find a sequence of control inputs U1:Nu = {u1:Nu0 , uNu1 , · · · , u1:NuNt−1}
such that it maximizes the mutual information between the sequence of expected
observational data and the source parameters Θ over the time t ∈ [t1, tNt ]. This
can be mathematically formulated as:

max
U1:Nu={u1:Nu

0 ,u1:Nu
1 ,··· ,u1:Nu

Nt−1}
J(s1:Nu0 ) =

max
U1:Nu

Nu∑
v=1

I(Θ1,Θ2, · · · ,ΘNt ; z1, z2, · · · , zNt |s1:Nu1 , s1:Nu2 , · · · , s1:NuNt
) (25)

constrained to {
svk+1 = F (svk, u

v
k), sv0 v = 1, 2, · · · , Nu

sak 6= sbk, a, b = 1, 2, · · · , Nu, a 6= b
(26)

where zk and Θk are the measurement data and uncertain source parameter
at time step tk, respectively. Nt is the total number of time steps during the
estimation process and ∆t is the time interval between every two consecutive
measurement updates. s1:Nu0 represents initial conditions and u1:Nuk denotes ap-
plied control signal at time tk for a set of Nu UAVs. Note that in Eq. (25), it is
assumed that measurement data from individual sensors or UAVs are indepen-
dent.

As shown in Eq. (30), the optimization is constrained to the dynamic model
for each UAV. Additionally, the second constraint in Eq. (30) is considered to
avoid redundant observations at the same time instance.



Solving the above optimization problem requires finding optimal control sig-
nals for all the Nu UAVs over the time t ∈ [t1, tNt ]. Unfortunately, performing
this optimization is computationally intractable. Hence, one needs to simplify the
original problem and find the approximate solution for optimal control signals
of each UAV.

One can use heuristic problem solving techniques like greedy algorithm [18]
to simplify the aforementioned optimization problem. Using greedy algorithm,
original optimization problem can be simplified to:

max
u1:Nu
k

J(s1:Nu0 ) =

max
u1:Nu
k

Nu∑
v=1

I(Θk; zk|svk) (27)

constrained to {
svk = F (svk−1, u

v
k), sv0 v = 1, 2, · · · , Nu

sak 6= sbk, a, b = 1, 2, · · · , Nu, a 6= b
(28)

As one can see, Eq. (27) tries to maximize the mutual information at any
given time step tk. Hence, resulting in optimal control policy uk for each of the
UAVs.

Another alternative is to approximate the original optimization problem as
the following:

min
U1:Nu={u1:Nu

0 ,u1:Nu
1 ,··· ,u1:Nu

Nt−1}
J(s1:Nu0 ) =

max
U1:Nu

Nu∑
v=1

I(Θ1,Θ2, · · · ,ΘNt ; z1, z2, · · · , zNt |sv1, sv2, · · · , svNt) '

min
U1:Nu={u1:Nu

0 ,u1:Nu
1 ,··· ,u1:Nu

Nt−1}

Nt−1∑
k=0

(
Nu∑
v=1

{
−I(Θk; zk|svk)

})
(29)

constrained to {
svk+1 = F (svk, u

v
k), sv0 v = 1, 2, · · · , Nu

sak 6= sbk, a, b = 1, 2, · · · , Nu, a 6= b
(30)

In above equations, zk and Θk are the measurement data and uncertain
source parameter at time step tk, respectively. I(Θk; zk|svk) represents the Mutual
Information between the measurement data and source parameter, given vth

UAV position at time tk. One should notice that Eq. (29) is a function of a
sequence of control signals U1:Nu = {u1:Nu0 , u1:Nu1 , · · · , u1:NuNt−1} which are enforced
on a set of Nu UAVs during the time. Also, the cost function J is a function of
initial position of UAVs, i.e. J = J(s1:Nu0 ). Hence, the above optimization shall
be performed for every possible combination for initial positions of Nu UAVs.



6.2 Dynamic Programming

Dynamic Programming [18] is used to find the optimal policy U1:Nu that mini-
mizes Eq. (29). Optimal policy U1:Nu = {u1:Nu0 , u1:Nu1 , · · · , u1:NuNt−1} is computed
by backward optimization in time, i.e. first finding the optimal control input
u1:NuNt−1, and then using u1:NuNt−1 to find optimal control signal u1:NuNt−2. This pro-
cedure will be repeated recursively to find the rest of the control signals uvks.
Generally, the following recursive algorithm [18] can be used to find optimal
policy Uv that minimizes Eq. (29) for each UAV:

Given an initial position s1:Nu0 , the optimal cost J∗(s1:Nu0 ) is equal to J0(s1:Nu0 ),
given by the last step of the following algorithm, which proceeds backward in
time from period Nt − 1 to 0:

JNt(s
1:Nu
Nt

) = 0 (31)

Jk(s1:Nuk ) = min
u1:Nu
k ∈U1:Nu

k (sk)

{
gk(s1:Nuk , u1:Nuk ) + Jk+1(s1:Nuk+1 )

}
(32)

constrained to {
svk+1 = F (svk, u

v
k), sv0 v = 1, 2, · · · , Nu

sak 6= sbk, a, b = 1, 2, · · · , Nu, a 6= b
(33)

where, k = Nt − 1, Nt − 2, · · · , 0 and

gk(s1:Nuk , u1:Nuk ) =

Nu∑
v=1

{
−I(Θk; zk|svk) + uvk

TBuvk

}
(34)

As mentioned before, this process should be performed for each of the possible
values for initial condition sv0. After finding the optimal policy Uv, it can then
be used to optimally locate the corresponding UAV.

Implementation of above algorithm using the continuous dynamics of the
UAV in Eq. (20) requires excessive computational resources and is not achievable
in real time. Hence to make the problem tractable, the spatial domain has been
discretized into a uniform grid. The mutual information is then only evaluated
at these grid nodes and the UAV motion is restricted to these nodes. This lead
to a more tractable sub-optimal solution that is implementable in real time.
Unfortunately, the problem complexity grows exponentially with the number of
UAVs. For instance, even in presence of 2 UAVs and a 100 × 100 × 10 spatial
grid points, there will be 1010 possible combinations for positions of UAVs for
which J(s1:20 ) needs to be minimized. Hence, an enormous computational effort
is required to perform such minimization. A simpler alternative approach to
overcome these deficiencies in minimizing Eq. (29) is to recursively find sub-
optimal policies for each one of the UAVs individually with slight modifications



in original cost function. The idea is to first find optimal position for the first
UAV during the time. Then, the sub-optimal policies for all other UAVs can be
found by minimizing the following modified cost function:

min
U={uv0 ,uv1 ,··· ,uvNt−1}

J(sv0) (35)

constraint to =

{
svk+1 = F (svk, u

v
k)

sv0
(36)

where,

J(sv0) =

Nt−1∑
k=0

−I(Θk, zk|svk) + uvk
TBuvk + α

v−1∑
j=1

e−[s
v
k−s

j
k]
TW [svk−s

j
k]

 (37)

where, v = 2, 3, · · · , Nu and α > 0 and the positive definite diagonal matrix W
are penalty factors that determine the separation between neighboring UAVs.
Hence, the UAVs are made to spread out in the spatial domain of interest thus
avoiding redundancy in measurements .

One should note that the computational cost involved in recursively finding
sub-optimal locations of UAVs is far less than the computational cost involved
in solving Eq. (32) to Eq. (34). For comparison, consider a case where Nu UAVs
are used to perform data observation over a Ng ×Ng ×Ng spatial grid points.
In this case, the computational cost involved in solving Eq. (32) to Eq. (34)
will be proportionate to N3Nu

g , while the computational cost involved in finding
sub-optimal locations of UAVs using Eq. (35) to Eq. (37) is proportionate to
NuN

3
g . Hence, solving Eq. (35) results in significantly less computational with

respect to solving Eq. (32), especially in presence of larger number of UAVs.

6.3 Limited Lookahead Policy

Depending on the nature of phenomenon under study, evaluation of mutual infor-
mation map for all the future time steps can be computationally expensive. This
will result in computational complexity while finding optimal control policies for
the UAVs during source parameter estimation process. Hence, using Eq. (37)
restricts real time applications of proposed algorithm. One way to avoid these
computational complexities is to approximate the true cost-to-go function Jk+1

in Eq. (37) with some function, denoted by J̃k+1, which is a limited lookahead
approximation of true cost-to-go function Jk+1. For instance, in Eq. (37), Jk+1

can be approximated as

Jk+1(svk, u
v
k) ' J̃k+1(svk, u

v
k) =

k+1+l∑
i=k+1

−I(Θi, zi|F (svi−1, u
v
i−1)) + uvi

TBuvi + α

v−1∑
j=1

e−[s
v
i−s

j
i ]
TW [svi−s

j
i ]

 (38)



where, v = 2, 3, · · · , Nu and l is the number of future time steps which are used
for approximation of true cost-to-go function Jk+1. As one can see, evaluation of
Eq. (37) requires knowledge of mutual information for all the time steps between
k + 1 and Nt − 1. While in limited lookahead method, Jk+1 is approximated by
a limited number of future time steps.

Similarly, Jk+1 in Eq. (32) can be approximated as

Jk+1(svk, u
v
k) ' J̃k+1(svk, u

v
k) =

k+1+l∑
i=k+1

−I(Θi, zi|F (svi−1, u
v
i−1)) + uvi

TBuvi , v = 1

(39)

Note that when the number of lookahead step is one, i.e. l = 1, limited
lookahead policy reduces to greedy algorithm which was discussed in Eq. (27)
and Eq. (28).

Limited lookahead policy has two major benefits with respect to original
Dynamic Programming algorithm. First, as mentioned before, limited lookahead
policy could result in considerably less computational cost involved in finding
sub-optimal control policies. The second benefit of limited lookahead policy is
that due to dependence of optimal policies on future wind data, the optimal
policies obtained using the original cost function may be erroneous for distant
future time steps. Hence, using limited lookahead policy avoids erroneous optimal
policies by approximating the true cost-to-go function with limited number of
future time steps.

The only drawback of using limited lookahead policy is that it may result in
slower convergence of estimation process, especially if the UAVs are located far
away from the mutual information map. To illustrate this more clearly, consider
the situation shown in Fig. 3. As one can see, if initial position of the UAV is
far from mutual information map, given maximum speed of UAV and lookahead
time step l = 3, there will not be any information in range of the UAV. Hence,
the UAV does not move and proposed algorithm suggests that the UAV should
stay at the same position during the time.

This shortcome can be overcome by minimizing the distance between the
UAV position and mutual information map, whenever the mutual information
inside the range of UAV is zero. In this way, the UAV will move toward the mu-
tual information map, even if mutual information map is out of range of UAV
in l time step. This can be mathematically described as the following:

If
k+1+l∑
i=k+1

I(Θi, zi|F (svi−1, u
v
i−1)) = 0, then

J̃k+1(svk, u
v
k) =

k+1+l∑
i=k+1

d(siImax , F (svi−1, u
v
i−1)), v = 1 (40)
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Fig. 3. Schematic layout of applied UAV sensor and mutual information maps at three
consecutive times. Red square shows initial position of UAV and black circle shows its
maximum range, given maximum speed of UAV and l = 3.

and

J̃k+1(svk, u
v
k) =

k+1+l∑
i=k+1

d(siImax , F (svi−1, u
v
i−1)) + α

v−1∑
j=1

e−[s
v
i−s

j
i ]
T [svi−s

j
i ] (41)

where, v = 2, 3, · · · , Nu, and

d(siImax , F (svi−1, u
v
i−1)) = ||siImax − F (svi−1, u

v
i−1)||2 (42)

is the Euclidean distance between the spatial location where mutual information
obtains its maximum (denoted by siImax) and location of UAV. Using above algo-
rithm, the UAVs always move toward the mutual information map, independent
of initial location of UAVs or lookahead time step l. Note that this property of
proposed approach warranties faster detection of the plume and consequently
faster convergence of estimation process.

7 Numerical Simulations

For numerical simulations, dispersion/advection of propane is simulated over
New York area. The domain of interest and the applied wind field (at one specific
time) are shown in Fig. 4. Simulation time is considered to be 24 hrs. starting
from 00 : 00 of September 1st, 2013. North American Regional Reanalysis wind
data at pressure level 100 kpa (height ' 100 m.) is used as the windfield for sim-
ulation. Three instantaneous mass releases are considered where their location
is known and the only uncertain parameters are their amount of mass release.



It is assumed that releases happen at the same time, i.e. all source releases hap-
pen at 00 : 00 of September 1st. All mass releases are assumed to be uniformly
distributed between 100 kg and 300 kg. Fig. 4 illustrates source locations and
the windfield (at t = 0 hrs.) over the two dimensional spatial domain.
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Fig. 4. Schematic layout of Propane release over New York region, source locations are
shown with purple circles, the wind-field (at t = 0 hr and pressure level = 100 kPa)
is shown over the two dimensional domain with blue vector field. Applied networks
of stationary sensors are shown with different markers. Green squares show applied 3
stationary sensors, while yellow triangles represent 25 stationary sensors. Geographical
location of different cities can be seen on the background map

Plume Dispersion Model

Second-order Closure Integrated PUFF (SCIPUFF) [23] is an atmospheric dis-
persion model which makes use of Gaussian puff methodology to provide a three-
dimensional, time dependent Lagrangian solution to the turbulent diffusion equa-
tions. In SCIPUFF model, time-dependent concentration field is represented as
a collection of overlapping Gaussian puffs. Each Gaussian puff is described by a
total mass, its mean, and measure of the spatial spread (covariance matrix). All
the puffs are then transported as Lagrangian elements and their overlap provide
overall behavior of a plume due to dispersion/advection.

A key feature of SCIPUFF is the splitting/merging algorithms which im-
proves the representation of inhomogeneous meteorology. In splitting/merging,



puffs are split, conserving all the moments, when they reach a size compara-
ble with the scale of the meteorological grid; similarly, puffs are merged when
they grow large enough to overlap their neighbors sufficiently. These techniques
are well suited to Lagrangian models, where very large ranges of scales need to
be represented. Near the source, puffs may have scales of a few meters or less,
but the model is required to calculate effects at ranges up to thousands of kilo-
meters. SCIPUFF has been evaluated using a wide range of field experiments,
ranging from the short range CONFLUX experiments with downwind range of
several meters up to the ANATEX and ETEX continental scale experiments.
For detailed information about SCIPUFF, please refer to [23].

Sensor Model

The sensor used for the measurements is a bar sensor with a discrete numbers of
bars similar to the one used in [24], with slight differences. The number of bars
ranges from zero to fifteen. These bar readings indicate the concentration magni-
tude at the sensor location at the instant; the sensor displays z = 0, · · · , 15, bars
when the internal continuous-valued concentration magnitude xint is between
thresholds Tz and Tz+1, where 0 ≤ Tz < Tz+1. The thresholds Tz’s are defined on
a logarithmic scale, i.e. Tz ∈ {0, 5×10−14, 10−13, 5×10−13, 10−12, · · · , 5×10−7}.

Properties of the sensor are determined by these thresholds and the properties
of xint, which is assumed to be normally distributed about the true concentration
x [24]. Measurement error v = xint - x may be considered a combination of
multiplicative noise and additive noise with mean zero and standard deviation√
R(x) = σ(x) = ax + b where a is the proportionality constant and b accounts

for the thermal motion of the electrons in the components [24]. In practice,
because the true value of x is never known, σ(x) is usually approximated by
σ(x̃), where x̃ is an estimate of x. a = 1 and b = 10−15 in our simulations. It
is also assumed that x̃ = Tz, where Tz is the sensor bar corresponding to xint.
Probability density function of xint given the corresponding concentration x is

p(xint|x) = N (xint;x, R) =
1√
2πR

e−
(xint−x)2

2R (43)

where, N (, ; ., .) denotes a Gaussian probability density function with the mean
and variance specified by its second and third arguments. Strictly speaking,
p(xint|x) is not a Gaussian distribution because it is only defined for non-negative
values of xint. Following Eq. (43), likelihood function, or simply probability of z
conditioned on x, is determined by the following integral

P (z|x) ∝
∫ Tz+1

Tz

p(xint|x)dxint,
∑
z

P (z|x) = 1 (44)

Note that due to discretization involved in sensor output, the mutual infor-
mation in Eq. (18) will be written as



I(Θ; z) =

Nz∑
z=0

M∑
q=1

wqΓ (Tz+1, Tz,Θ(ξq), R) ln (Γ (Tz+1, Tz,Θ(ξq), R))−

Nz∑
z=0

(
M∑
q=1

wqΓ (Tz+1, Tz,Θ(ξq), R)

)
ln

(
M∑
q=1

wqΓ (Tz+1, Tz,Θ(ξq), R)

)

where,

Γ (Tz+1, Tz,Θ(ξq), R) =
1

2

{
erf

(
Tz+1 − x(Θ)√

2R

)
− erf

(
Tz − x(Θ)√

2R

)}

and Nz = 15. Note that quadrature scheme is used to evaluate the integrals in
I(Θ; z).

A set of 59 CUT8 quadrature points are used to quantify the uncertainty
involved in concentration of dispersal material. Also, a 6th order gPC expansion
is used to reconstruct distribution of parameters after each update. Simulation
of dispersion/advection has been performed using SCIPUFF numerical model,
where concentration of propane is recorded every 10 mins.

Performance of DDM approach is verified by comparing data assimilation
results obtained by mobile and stationary sensors. Three sensors are used for data
observation and a limited lookahead policy with l = 6 is used for finding location
of each mobile sensor during the time. We considered α = 5 and W = diag([1, 1])
in our simulation. Fig. 5(a) illustrates positions of UAVs during the time over
the spatial domain. It can be observed from Fig. 5(a) that the UAVs follow the
plume during the time and end up to the locations where the mutual information
map obtains its maximum.

Convergence behavior for mean estimate of source parameters m2 and m3

using stationary sensors, along the minimum and maximum range of estimation
are shown in Fig. 6. Fig. 6 illustrates that using stationary sensors results in poor
estimates of the parameters. This is due to the inefficient placement of sensors
during data assimilation process.

Fig. 7 illustrates convergence behavior for mean estimate of source param-
eters m1 and m2 using mobile sensors. As Fig. 7 represents, DDM approach
results in significantly better convergence for mean estimates of the parameters.
In addition, estimation process is very confident about the source parameters
estimates.

Table 1 shows the amount of information I(Θ; z) collected by each sensor
while using stationary and mobile sensors. It is clear from Table 1 that using
Dynamic Data Monitoring method significantly increases the amount of mutual
information collected by each sensor during the data assimilation process, and
consequently improves the convergence behavior of the estimation process.
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Fig. 5. a) Obtained way-points for mobile sensors at different time steps based on maxi-
mizing mutual information content. Contour map and corresponding colorbar represent
the information map at the final time. b) Obtained way-points for mobile sensors at
different time steps using Chemotaxis strategy. Contour map represents the mean es-
timate of concentration field at the final time. The windfield at t = 24 hr (pressure
level = 100 kpa) and geographical map of the region are shown in the background.
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Fig. 6. Source parameter estimates during the time obtained using stationary sensors

To further illustrate performance of proposed methodology, we have utilized
chemotaxis strategy (i.e. moving UAVs along gradient of concentration field) to
estimate uncertain source parameters. The same structure for mobile sensors is
used while implementing chemotaxis strategy. Obtained way-points for mobile
sensors while using chemotaxis strategy can be seen in Fig. 5(b). Fig. 8 illustrate
convergence for mean estimate of source parametersm1 andm2 using chemotaxis
algorithm. As expected, using chemotaxis method results in better convergence
comparing with stationary sensors, but its performance is not as good as DDM
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Fig. 7. Source parameter estimates during the time, obtained using DDM method

Table 1. Information collected by each sensor while with and without using Dynamic
Data Monitoring approach.

sensor number collected information

Stationary Dynamic

sensor 1 1.8743 8.2208

sensor 2 1.4219 6.8420

sensor 3 1.4009 7.1927

approach and obtained estimates for source parameters are not as confident as
those of DDM method.
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Fig. 8. Source parameter estimates during the time, obtained using Chemotaxis
method



To summarize, Root Mean Square Error (RMSE) between mean estimate of
source parameters and their actual values while using different sensor networks
and different methods is shown in Table 2. It is clear from Table 2 that pro-
posed DDM algorithm outperforms all the other alternative methods or sensor
networks, and DDM approach results in least amount of RMSE comparing to
other sensor networks and chemotaxis algorithm. To highlight performance of
proposed DDM approach, we have also compared RMSE in parameter estimates
obtained by DDM approach with RMSE of source parameter estimates using
25 stationary sensors (shown with blue crosses in Fig. 4). As Table 2 repre-
sents, using DDM approach with just 3 sensors results in lower value of RMSE
in parameter estimates, comparing with 25 stationary sensors. Hence, proposed
DDM method provides more accurate estimates while using less number of data
observation sensors at the same time.

Table 2. Root Mean Square Error (RMSE) between mean estimate of source pa-
rameters and their actual values while using different sensor networks and different
methods.

sensor network/method RMSE

m1 m2 m3

3 stationary sensors 46.27 21.18 38.67

25 stationary sensors 14.49 19.42 33.86

3 mobile sensors / chemotaxis 16.11 11.97 14.32

3 mobile sensors / DDM 1.93 5.74 12.19

8 Conclusion

In this research, an end-to-end method was developed to estimate the source
parameters of a dispersion phenomenon using optimally placed data monitor-
ing sensors. The key idea of the presented method is to optimally locate data
monitoring sensors such that the mutual information between model predictions
and data measurements is maximized thereby giving a better reduction in un-
certainty. The main advantage of this approach is that it significantly increases
the accuracy of the estimation algorithm, while using fewer number of data
observation sensors. Further, a new set of quadrature points, known as CUT,
are used to alleviate the computational complexity involved in the propagation
of uncertainty in the parameters. The limited lookahead dynamic programming
approach is well suited for the current problem as it is capable of incorporating
or assimilating the updated information of wind data and measurements and
thus provides robust UAV trajectories to collect better measurements. Mutual
collisions and measurement redundancy are avoided by constantly maintaining



a sufficient separation between UAVs at all times. The numerical simulations
validate the proposed methodology where the mobile sensors, when optimally
planned to make measurements at specific locations and specific time instances,
provide better estimates that significantly outperform the estimates from sta-
tionary sensors. It is emphasized that the proposed dynamic data monitoring
method can be applied to other types of data assimilation problems, especially
in large scale systems with Hidden Markov Models or even black-box models
with minor modifications.
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