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Abstract

All across the world, toxic material clouds are emitted from sources, such as industrial plants,

vehicular traffic, and volcanic eruptions can contain chemical, biological or radiological mate-

rial. With the growing fear of natural, accidental or deliberate release of toxic agents, there is

tremendous interest in precise source characterization and generating accurate hazard maps

of toxic material dispersion for appropriate disaster management.

In this dissertation, an end-to-end framework has been developed for probabilistic source

characterization and forecasting of atmospheric release incidents. The proposed methodology

consists of three major components which are combined together to perform the task of source

characterization and forecasting. These components include Uncertainty Quantification,

Optimal Information Collection, and Data Assimilation.

Precise approximation of prior statistics is crucial to ensure performance of the source

characterization process. In this work, an efficient quadrature based method has been utilized

for quantification of uncertainty in plume dispersion models that are subject to uncertain

source parameters. In addition, a fast and accurate approach is utilized for the approximation

of probabilistic hazard maps, based on combination of polynomial chaos theory and recently

developed Conjugate Unscented Transformation.

Besides precise quantification of uncertainty, having useful measurement data is also

highly important to warranty accurate source parameter estimation. The performance of

source characterization is highly affected by applied sensor orientation for data observation.

Hence, a general framework has been developed for the optimal allocation of data observation

sensors, to improve performance of the source characterization process. The key goal of this

framework is to optimally locate a set of mobile sensors such that measurement of better

data is guaranteed. This is achieved by maximizing the mutual information between model

predictions and observed data, given a set of kinetic constraints on mobile sensors. Dynamic

programming method has been utilized to solve the resulting optimal control problem.

xiii



To complete the loop of source characterization process, two different estimation tech-

niques, minimum variance estimation framework and Bayesian Inference method has been

developed to fuse model forecast with measurement data.

Incomplete information regarding the distribution of associated noise signal in measure-

ment data, is another major challenge in the source characterization of plume dispersion

incidents. This frequently happens in data assimilation of atmospheric data by using the

satellite imagery. This occurs due to the fact that satellite imagery data can be polluted

with noise, depending on weather conditions, clouds, humidity, etc. Unfortunately, there is

no accurate procedure to quantify the error in recorded satellite data. Hence, using classical

data assimilation methods in this situation is not straight forward. In this dissertation, the

basic idea of a novel approach has been proposed to tackle these types of real world prob-

lems with more accuracy and robustness. A simple example demonstrating the real-world

scenario is presented to validate the developed methodology.

Keywords: Data Assimilation, Inverse Problem, Optimal Sensor Placement, Dynamic

Data Driven Application and System (DDDAS), Adaptive Sensing
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Chapter 1

Introduction

1.1 Source Characterization of Large Scale Systems

Distributed parameter systems [1] have an important role in modeling different physical

phenomena ranging from spatial modeling of infectious diseases to transport of amino acids

within cells, diffusion of oxygen into blood, doping of semiconductors, air quality modeling,

and diffusion/dispersion of a pollutant material through atmosphere. Most of proposed nu-

merical approaches for solving distributed parameter systems, use discretization techniques

to obtain approximate solution of the system. This often leads to a system of differential

equation of large number of states which should be solved numerically. For instance, ap-

plied numerical solutions for the shallow water model [2] converts a set of partial differential

equations into a set of differential equations, where the number of states depends on applied

resolution for discretization. There often exists a trade off between the number of states for

discretized system and desired accuracy for approximate numerical solution.

Plume dispersion phenomenon is one of the examples for distributed parameter sys-

tems, where its behavior is governed by a dispersion/advection partial differential equation.

Emission of toxic material clouds from sources, such as industrial plants, vehicular traffic,

deliberate toxic releases, and volcanic eruptions is one of the potential threats to environment

and human society. With increasing number of instances of toxic material release, there is

tremendous interest in precise source characterization and generating accurate hazard maps

of toxic material dispersion for appropriate disaster management

Different algorithms have been proposed to solve the source characterization problem
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Reza Madankan Introduction

for the plume dispersion phenomenon. These algorithms can be divided into three major

categories: adjoint based techniques, optimization based methods, and probabilistic methods

[3]. Adjoint based techniques are based on sensitivity analysis of cost function at final

time with respect to changes of states/parameters in earlier time. One should note that

backward solution is needed to perform this sensitivity analysis. The major drawback of

adjoint methods is that they use linear approximations of the dynamics. Hence, adjoint

based methods are useful when linearized approximations are valid. In addition, application

of adjoint based methods is restricted to the cases when applied cost function is differentiable.

The basic idea of optimization based techniques is to find the source parameters in such

a way that it minimizes the difference between the observed data and model prediction.

Clearly, different cost function and optimization algorithms can be used to solve this prob-

lem. One of the major drawbacks of optimization based methods is their dependency on the

applied initial value for optimization, which can specially restrict their application in non-

convex optimization problems. In addition, optimization based techniques result in a point

estimate for source parameters and no confidence bound is associated with these point esti-

mates. One might be interested in statistical confidence bounds, based on possible presence

of error in model prediction or presence of noise in measurement data.

Applied probabilistic approaches for source identification in hazardous chemical releases

can be divided into three different categories: Kalman based methods [4,5], Bayesian Monte

Carlo (BMC) method [6], and Bayesian Markov Chain Monte Carlo (BMCMC) technique

[7]. Kalman filtering methods provide posterior mean and variance of source parameters,

based on linearity assumption for dynamics of the system and Gaussian assumption for prior

distribution of uncertain parameters and distribution of present noise in measurement data.

These assumptions restrict applicability of Kalman filtering methods.

BMC is another statistical tool which is widely used for source characterization of plume

dispersion incidents. The basic idea of this approach is to make use of Bayesian inference

framework and Monte Carlo simulations. In this approach, numerical model is simulated

for a large set of Monte Carlo samples, which are generated based on prior distribution of

source parameters. Then, only those Monte Carlo samples whose outputs are consistent with

observation data are preserved. As one can see, a large set of Monte Carlo samples is required

to get a reasonable approximation for the posterior distribution of source parameters.

One can use BMCMC approach to alleviate computational complexities involved in BMC

2



Reza Madankan Introduction

method. In BMCMC, Monte Carlo samples are replaced with a Markov Chain Monte Carlo

samples. Hence, less number of numerical simulations is needed to get the same approxima-

tion for posterior distribution of source parameters. However, still large number of MCMC

samples is required to accurately approximate posterior distribution of source parameters.

In addition, generating MCMC samples in high dimensions can still be computationally

expensive.

1.2 Optimal Information Collection

Independent of applied approach for source estimation, locations of data observation sensors

are crucially important while characterizing source parameters in plume dispersion incident.

It is clear that poor data measurement, caused by misplacing the sensors over the domain

of interest, results in poor estimate of source parameters. Hence finding optimal location of

the sensor is very important for the source parameter estimation problem. Due to dynamic

of plume dispersion phenomenon, it is much more efficient to apply mobile sensors, instead

of static sensors for data monitoring purposes. Different strategies have been suggested to

determine the optimal path of applied mobile sensors while source parameters characteriza-

tion of plume dispersion phenomenon [8–12]. Earlier works to tackle this problem can be

categorized as Chemotaxis [13,14], Anemotaxis [15,16], and Fluxotaxis [17]. These methods

provide algorithms for moving mobile sensors based on concentration gradient, wind-field

data, or dispersal material flux.

The major deficiency of aforementioned approaches lies in their restriction to continuous

releases incidents. In other words, none of chemotaxis, anemotaxis, and fluxotaxis methods

are applicable in presence of spontaneous releases. This is due to the presence of discontinu-

ities in plume flow which hinders evaluation of concentration gradient or flux of the plume

during the time. We will discuss about these methods in more detail in Chapter 5.

Besides aforementioned methods, recently multiple researches have been done on the field

of optimal sensor placement, based on information theory [8–12]. The basic idea of these

methods is to locate data observation sensors at spatial location where mutual information of

model output and observed data is maximized. Based on dynamics of applied sensors, most

of the works in this category can be divided into two different types. In the first scheme, a

large network of stationary sensors is considered and few of these sensors at each time step

3
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are selected based on calculated mutual information map [9] [10]. Hence, no dynamics is

considered for applied sensors in this technique. The major drawback of this approach is

that a large number of stationary sensors is needed (while a small portion of them is used

at each time) to assure performance of proposed approach.

In the second scheme, a set of mobile sensors are used which move toward spatial locations

where the value of mutual information increases [11] [12]. Hence, much lower number of

sensors is needed in this technique. However, path control of applied mobile sensors needs to

be considered. Different approaches are developed for path control of applied mobile sensors,

ranging from optimal control [12] to moving along gradient of mutual information [11].

The major drawback of present methods in using mobile sensors is that they are suscep-

tible to be trapped in local optima. In other words, none of the existing techniques provide

a universal methodology to ensure global optimality of mobile sensor location.

1.3 Challenge of Noise Statistics

As mentioned in Section 1.1, there exist numerous researches [18–24] regarding probabilis-

tic source estimation of dynamic systems, given some measurement data. In all these ap-

proaches, there is a crucial need for knowledge of statistics of associated noise in observed

data. For instance, mean and variance of the noise are required in all minimum variance

based methods. Similarly, in Bayesian inference framework, complete knowledge of noise

signal distribution is needed to construct the likelihood function.

A major challenge in source parameter estimation of dynamic systems, especially plume

dispersion incidents, is when there is no accurate information regarding the sensor error

characteristics, i.e. there exists no accurate information about the statistics of the noise

polluted in measurement data. This frequently happens in data assimilation of atmospheric

incidents by using satellite imagery. This occurs due to the fact that satellite imagery

data are often polluted with noise, depending on weather conditions, clouds, humidity, etc.

Unfortunately, there is no precise procedure to quantify the error in the recorded satellite

data. Hence, using classical data assimilation methods in this situation is not straight

forward. One way to proceed in this situation is to assume some statistics for the associated

noise in measurement data and perform the estimation. However, depending on assumed

values for noise statistics, obtained estimation results may not be as inclusive and accurate

4
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as it should be in reality.

1.4 Contribution and Outline of the Dissertation

Contribution

The overall objective of this dissertation is to develop an end-to-end computational frame-

work for uncertainty quantification and data assimilation of large scale systems, especially

plume dispersion incidents, with emphasis on addressing above discussed problems in liter-

ature. The main contributions of the dissertation is listed as:

1. Develop an end-to-end computational framework for uncertainty quantification and

source characterization of large scale systems, with emphasis on plume dispersion in-

cidents. A major advantage of the proposed methodology is its ability to characterize

non-Gaussian uncertainty with limited computational effort.

2. Develop a source estimation method which provides a confident estimate of source

parameters along their associated uncertainty bounds.

3. Develop a sensor placement algorithm which is implementable in near real time and im-

proves performance of applied source estimation method by optimally locating mobile

sensors over the spatial domain at each time step. The proposed methodology exploit

the non-Gaussian uncertainty in model forecast to accurately compute information

metrics.

4. Present a novel approach for source estimation of large scale systems in absence of

sensor error characteristics.

5
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Outline of Dissertation

The method presented in this dissertation consists of three different components which are

combined together to perform the task of source parameter estimation. These components

consist of i) Uncertainty Quantification (UQ), ii) Optimal Information Trajectory Design,

and iii) Data Assimilation (DA). Schematic view of whole estimation process is shown in

Fig. 1.1.
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Figure 1.1: Schematic view of estimation process

As shown in Fig. 1.1, estimation process starts with a given uncertainty in source param-

eters of a dispersion phenomenon. The first step to perform the estimation is to quantify

the effect of uncertain source parameters on spatial-temporal distribution of concentration of
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dispersive material. This is performed by propagation of a set of quadrature points through

the numerical model. Weighted average of propagated quadrature points are then used to

determine statistics of dispersive material (mean and covariance) over the spatial domain at

a given time. Obtained statistics by pure propagation of quadrature points through numer-

ical model are called prior statistics. Accurate approximation of prior statistics is crucial to

ensure the performance of estimation process. Hence, utilizing an appropriate and efficient

set of quadrature points is of high importance. In addition to prior statistics of the plume,

applied quadrature points can also be combined with a polynomial chaos framework to find

probabilistic hazard map for presence of the plume over the spatial domain at each time.

Besides precise quantification of uncertainty, having useful measurement data is also

highly important to warranty accurate source parameter estimation. Optimal Information

Trajectory Design module is used to perform this task during estimation process. The

key goal of Optimal Information Trajectory Design is to optimally locate a set of mobile

sensors (Unmanned Aerial Vehicles) such that measurement of better data is guaranteed

at each time step. This is achieved by maximizing the mutual information between model

predictions and observed data, given a set of kinetic constraints on mobile sensors. Dynamic

Programming [25] [26] is used to solve this optimization problem. This will result in a set of

control signals which are applied to each mobile sensor at each time step tk. The obtained

control policy determines the optimal locations for data monitoring sensors during the time.

To complete the estimation process, obtained prior statistics from Uncertainty Quantifi-

cation and observed data from Optimal Information Trajectory Design are combined together

in a source estimation framework. This will result in posterior value for statistics (e.g. mean

and covariance) of source parameters estimates.

The outline of this dissertation is as follows:

In Chapter 2, we present a quadrature based method for uncertainty quantification of

large scale systems. In addition, an algorithm based on generalized Polynomial Chaos surro-

gate model [27] is presented to approximate probability of presence of dispersal material over

spatial domain. Applied techniques for uncertainty quantification of plume dispersion inci-

dents in this chapter provides us with model forecast which is needed for data assimilation

in future chapters.

In Chapter 3, two different source estimation approaches are utilized for source parameter

estimation of plume dispersion phenomenon. At first, a polynomial chaos based minimum
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variance estimation [18] is introduced to perform data assimilation of nonlinear dynamic

systems in presence of affine pollution of observational data with noise. In addition, a

Bayesian inference data assimilation tool is introduced to tackle source estimation problem

in presence of non-affine pollution of observation data with noise signal.

In Chapter 4, developed methods in Chapter 2 and Chapter 3 are then applied to the

problem of source parameter estimation and forecasting of Eyjafjallajökull eruption which

occurred in April 2010.

The focus of Chapter 5 is about developing a universal scheme for optimal sensor place-

ment. In this chapter, we will develop an optimal sensor placement strategy based on

information theory and dynamic programming method to ensure optimal sensor placement

of mobile sensors over spatial domain at each time step.

In addition to provided methods in Chapter 3, we present the basic idea of a moment

based approach in Chapter 6 to overcome the problem of source estimation of large scale

systems in the absence of sensor error characteristics. In this chapter, we will describe a

novel approach for source estimation of this type of real world problems which makes use of

image comparison techniques and quadrature methods.

Chapter 7 is the final chapter which summarizes the major contributions of the disserta-

tion and discusses the results and the future work in this area.

In the end, please note that even though emphasis of this dissertation is about source

characterization of plume dispersion phenomena, all the mathematical developments in this

document can be applied to other instances of large scale systems.
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Chapter 2

Uncertainty Quantification

2.1 Introduction

The science of Uncertainty Quantification (UQ) describes the propagation of uncertainty in

dynamical systems and its major goal is to determine the likelihood of certain outcomes

of dynamical systems, given some aspects of dynamical systems to not be exactly known.

In other words, UQ provides mathematical tools to characterize the behavior of outputs of

dynamical systems, given some sources of uncertainties involved in their structure.

In general, there exist two different categories of uncertainty: Aleatoric uncertainty and

Epistemic uncertainty [28]. Aleatoric uncertainty represents the randomness in physical phe-

nomena, while epistemic uncertainty accounts for ignorance in accurate modeling of physical

phenomena. The major difference between aleatory and epistemic uncertainty is that the

aleatory uncertainty can not be reduced and it can only be better characterized, while epis-

temic uncertainty can be diminished by collection of information about the system under

study.

The focus of this dissertation is on characterizing the uncertainty of dynamical systems

in presence of epistemic uncertainty. The very first step to achieve this goal is to quantify the

model output uncertainty in presence of epistemic uncertainty, e.g. presence of uncertain

parameters or initial condition in model structure. This is also denoted as uncertainty

propagation or uncertainty quantification.

There exist numerous techniques to perform the task of uncertainty quantification of dy-

namic systems in presence of uncertain parameters and/or initial conditions, ranging from
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simple Monte Carlo (MC) method to spectral decomposition based methods, like stochas-

tic finite element [29] and generalized Polynomial Chaos (gPC) [30] [31], and solution of

Fokker-Planck-Kolmogorov Equation (FPKE) [19]. One should note that the choice of each

method for uncertainty quantification depends on desired level of accuracy and available

computational resources.

Ideally, Kolmogorov equation [32] provides exact solution for propagation of uncertainty

through dynamical systems that are in presence of parametric and/or model input uncertain-

ties. Exact analytical description of uncertainty, provided by Kolmogorov equation, makes

this approach very elegant candidate for uncertainty quantification of dynamical system.

However, solving Kolmogorov equation is not usually straightforward. Unfortunately, exact

solution of Kolmogorov equation is not attainable other than very few cases. Hence, alter-

native methods are proposed to approximate the solution of Kolmogorov equation [33–35].

Unfortunately there exists significant computational cost involved in proposed approximate

methods which restricts their applicability. Also, in higher dimensions, the computational

cost involved in these methods becomes prohibitive. Hence, these methods can not be used

to large scale systems.

On the other hand, Monte Carlo method is one of the most simplistic approaches that is

widely used for uncertainty quantification of dynamical systems. In Monte Carlo method [36],

a large set of points are generated based on distribution of uncertain parameter/initial condi-

tions. Generated random points are then propagated through dynamic model to approximate

statistics of model output in future time steps. However, ease of implementation and sim-

plicity of MC approach makes it a very desirable candidate for uncertainty quantification of

dynamical system, but its low rate of convergence hinders its applicability when a precise ap-

proximation of model output uncertainty is needed. In other words, depending on involved

nonlinearities, a large number of random points need to be propagated through dynamic

model to ensure convergence of obtained statistics. Clearly, larger number of MC samples

results in more accurate statistics, but it results in more computational load at the same

time which is undesirable. Schematic view of Monte Carlo method is shown in Fig. 2.1.

Spectral decomposition based techniques [29, 30, 37, 38] are another set of tools that are

often used to avoid computational burden of Monte Carlo approach in uncertainty quan-

tification of dynamic systems. The essence of spectral decomposition methods lies in de-

composition of uncertain variable into a linear combination of a set of basis functions which
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Figure 2.1: Schematic illustration of Monte Carlo approach

are function of standardized random variable ξ = [ξ1, ξ2, · · · , ξm]T ∈ Rm, where m is the

number of existing independent uncertain variables in dynamic model. The major bene-

fit of spectral decomposition based methods is their low computational cost and their ease

of implementation. However, convergence issues in presence of severe nonlinearities, large

number of independent uncertain variables, and long time uncertainty propagation restrict

applicability of spectral decomposition methods.

An alternative approach to perform the task of uncertainty quantification is to make use

of quadrature points. In quadrature points method, a set of intelligently selected points will

be propagated through dynamical model (which can be given as a black-box model or a

set of dynamical equations) and statistics of the output (e.g. mean and variance) are then

determined by weighted average of model outputs. The major benefit of quadrature scheme

is its significantly less computational cost with respect to Monte Carlo method. Also, the

computational complexity involved in quadrature methods is far less than the computational

complexities involved in solution of Kolmogorov equation. In addition, quadrature method

can be combined with spectral decomposition based methods like gPC theory to improve

11
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their performance [39] [40].

To summarize our discussion, a comparison between discussed methods is provided in

Fig. 2.2. As one can see, method of quadrature points requires the minimal computational

effort, while at the same time it provides reasonable degree of accuracy, comparing with

other methods.
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Figure 2.2: Comparison between different applied methods for uncertainty quantification

In this dissertation, due to mentioned benefits of the method of quadrature points with

respect to other approaches like MC, spectral decomposition methods, and Kolmogorov

equation, a quadrature based method is being used for quantification of uncertainty in plume

dispersion models that are subject to uncertain source parameters. In the following, we first

describe the method of quadrature points in Section 2.2. Mathematical developments for

approximation of natural hazard maps are then explained in Section 2.3. In Section 2.4,

we will present multiple numerical simulations to illustrate performance of the proposed

approach. Finally, summary of the chapter is presented in Section 2.5.

2.2 Method of Quadrature Points

Propagation of uncertainty due to uncertain input parameters and initial conditions can be

approximated by propagation of a set of quadrature points, expanded over a domain defined

by uncertain parameters. The resulting method can be viewed as a MC-like evaluation of
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system of equations, but with sample points selected by quadrature rules. To explain this

in more detail, consider the following dynamical system:

ẋ = f(t,x,Θ) (2.1)

where x ∈ Rn represent states of the system at a given time t which is function of uncertain

model parameter vector Θ = [θ1,θ2, · · · ,θm]T ∈ Rm. Note that state x is a function of

parameter Θ, i.e. x = x(t,Θ). The parameter Θ is assumed to be time invariant and

function of a random vector ξ = [ξ1, ξ2, · · · , ξm]T ∈ Rm defined by a pdf p(ξ) over the

support Ω.

Based on the method of quadrature points, N th order moment of state x, at a given time

t can be written as:

E [xN ] =

∫
ξ

xN(Θ, t)p(ξ)dξ '
M∑
q

wqx
N(Θ(ξq), t), N = 1, 2, · · · (2.2)

where, M denotes total number of applied quadrature points and Θ(ξq) ∈ Rm×1 represents

qth quadrature point, generated based on applied quadrature scheme. Similarly, N th order

central moments of state x at each time t can be evaluated by shifting the quadrature points

by the computed mean and then using Eq. (2.2).

Hence, the moments at any given time can be approximated as a weighted sum of the

outputs of simulation runs initiated at the quadrature points generated from the initial

uncertain parameter distribution. The natural choice for these quadrature points is the set

of Gaussian quadrature points which is defined by choosing the points optimally in the sense

of maximizing the degree of polynomial function that integrates exactly.

Different types of quadrature rules like classical Gaussian quadrature rule [41], Clenshaw-

Curtis quadrature [42], and sparse grid [43] can be used to evaluate the mentioned integrals.

In the following, we briefly describe few of these methods.

Gaussian Quadrature

The original N−point Gaussian quadrature rule is constructed such that it provides an exact

result for integration of polynomials of degree 2N − 1 or less over the interval [-1,+1] by a

suitable choice of the quadrature points ξi and weights wi for i = 1, ..., n, i.e.
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∫ 1

−1

f(ξ)dξ '
n∑
i=1

wif(ξi) (2.3)

For integration over a general interval [a, b], Gaussian quadrature can be written as:∫ b

a

f(y)dy ' (
b− a

2
)

n∑
i=1

wif((
b− a

2
)ξi + (

b+ a

2
)) (2.4)

where, ξis are corresponding quadrature points defined over interval [−1,+1].

The integration problem can be reformulated in slightly more general form by introducing

a positive weight function into the integral, which can be seen as a probability density

function, i.e. ∫ b

a

f(y)dy =

∫ b

a

f(y)

p(y)︸︷︷︸
g(y)

p(y)dy =

∫ b

a

g(y)p(y)dy (2.5)

Different versions of Gaussian quadrature points are developed based on the type of proba-

bility density function p(y) in Eq. (2.5). Table 2.1 illustrates different types of quadrature

points which are being used based on the distribution p(y).

Interval [a, b] p(y) Quadrature Points

[−1,+1] Uniform Gauss-Legendre quadrature

[0,∞) Exponential GaussLaguerre quadrature

[−∞,+∞) Normal GaussHermite quadrature

Table 2.1: Applied Gaussian Quadrature points, based on distribution p(y) [41]

Note that in an n-dimensional parameter space, the tensor product of 1-dimension quadra-

ture points is used to generate quadrature points. As a consequence of this, the number of

quadrature points increases exponentially as the number of input parameters increases.

Clenshaw-Curtis quadrature

The basic idea of Clenshaw-Curtis quadrature is to expand the integrand in terms of Cheby-

shev polynomials:

f(ξ) =
a0

2
T0(ξ) +

∞∑
k=1

akTk(ξ) (2.6)
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where, Tk(ξ)s are corresponding Chebyshev polynomials. Note that quadrature points in

Clenshaw-Curtis scheme correspond to the exterma of the Chebyshev polynomials. Hence,

given N basis function in Eq. (2.6) we will have N Clenshaw-Curtis quadrature points.

One should notice that given N quadrature points, Clenshaw-Curtis scheme exactly inte-

grates polynomials upto degree N − 1. Also, similar to Gaussian quadrature scheme, tensor

product of 1-dimensional Clenshaw-Curtis quadrature points is used to generate correspond-

ing quadrature points in higher dimensional.

Conjugate Unscented Transform

For a generic n-dimensional integral, the tensor product of 1-dimensional Gaussian quadra-

ture points or Clenshaw-Curtis quadrature points results in an undesirable exponential

growth of the number of points. Hence, using regular quadrature schemes will be com-

putationally expensive in higher dimensions. In this dissertation, we have used Conjugate

Unscented Transform (CUT) recently developed by Nagavenkat et al. [44–47], to overcome

this drawback of regular quadrature points. The proposed CUT points are efficient in terms

of accuracy while integrating polynomials and yet just employ a small fraction of the number

of points used by the traditional Gaussian quadrature scheme.

Conjugate Unscented Transform(CUT) approach can be considered as an extension to the

conventional Unscented Transformation method, see [48], by satisfying higher order moment

constraint equations. The widely used Gaussian Quadratures can integrate all 1-Dimension

polynomials of degree 2N − 1 with only N quadrature points. When extended to generic

n-Dimensions, one would have to take a tensor product of 1-Dimension quadrature points

totaling to Nn point, thus leading to an exponential growth of points with dimension. The

main idea of the CUT approach is to judiciously select specific structures of symmetric points

rather than taking the full tensor product of 1-D points. As a result, the obtained points can

still exactly integrate polynomials of total degree 2N−1 in n-dimensional space but with far

lower number of points than Nn. To illustrate the Conjugate Unscented Transform approach

in more detail, consider the problem of approximating the expected value of a function f(x)

in the following form:

E [f(x)] =

∫
Ω

f(x)p(x)dx '
N∑
i=1

wif(x(i)) (2.7)
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where, x = [x1, x2, · · · , xn]T ∈ Rn and p(x) is a uniform or Gaussian density function defined

over the domain Ω ⊂ Rn. Also, x(i) ∈ Ω are cubature points which are used to approximate

the integral, and wi > 0 are their corresponding scalar weights. Assuming that f(x) has a

valid Maclaurin series, given by:

f(x) =
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

nn=0

xn1
1 x

n2
2 · · ·xnnm

n1!n2! · · ·nn!

∂n1+n2+···+nnf

∂xn1
1 ∂x

n2
2 · · · ∂xnnn

(2.8)

the expectation of f(x) can be written as:

E [f(x)] =
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

nm=0

E [xn1
1 x

n2
2 · · ·xnmm ]

n1!n2! · · ·nm!

∂n1+n2+···+nmf

∂xn1
1 ∂x

n2
2 · · · ∂xnnn

(2.9)

Hence, the problem of evaluating the expected value of f(x) is reduced to computing higher

order moments of random vector x according to the pdf p(x). Now, substitution of Eq. (2.8)

into Eq. (2.7) leads to the following expression:

N∑
i=1

wif(x(i)) =
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

nn=0

(∑N
i=1wi

∏n
k=1 x

nk
(i,k)

)
n1!n2! · · ·nn!

∂n1+n2+···+nmf

∂xn1
1 ∂x

n2
2 · · · ∂xnnn

(0) (2.10)

Comparing Eq. (2.10) and Eq. (2.9) results in a set of algebraic equations known as Moment

Constraint Equations (MCE):

E [xn1
1 x

n2
2 · · ·xnnN ] =

N∑
i=1

wi

n∏
k=1

xnk(i,k) (2.11)

where xnk(i,k) is the kth coordinate of the ith point x(i). Notice that the left hand side of

the aforementioned equation contain actual moments of input parameter density function

while right hand side is function of unknown position of quadrature points. The CUT

methodology involves finding quadrature points such that they satisfy Eq. (2.11) upto a

desired order of moments. Assuming p(x) to be symmetric, the cubature points are preferred

to lie symmetrically on following appropriately defined directions:

• Principal Axes: Generally in a n-dimensional cartesian space, there exists n orthogonal

coordinate axes centered at the origin which correspond to eigen-vectors of the covari-

ance of input random variable. These axes are called principal axes which are denoted

by σ. Also, the corresponding point on these axes are shown by σj, j = 1, 2, · · · , 2n.
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• Conjugate Axes: Conjugate axes denoted by cP (P ≤ n), are the axes constructed

from all the combinations and sign permutations of the set of principal axes taken P

at a time. These points are shown by cPi , where i = 1, 2, · · · , 2P
 n

P

.

• Scaled Conjugate Axes: The remainder of the cubature points are found from nth-

Scaled Conjugate axes which are constructed from all the combinations including sign

permutations of the set of principal axes such that in every combination exactly one

principal axis is scaled by a scaling parameter h. These set of axes are labeled as sn(h),

and the points are listed as sni (h) where i = 1, 2, · · · , n2n.

Table 2.2 illustrates a sample point for each of explained points in n dimension. As well,

schematic view of the mentioned points in 3 dimensional space can be seen in Fig. 2.3.

Table 2.2: Different types of CUT points defined in n-dimensional space

Type Sample Point Number of Points

σ (1, 0, 0, · · · , 0) 2n

cP (1, 1, · · · , 1︸ ︷︷ ︸
n

, 0, 0, · · · , 0︸ ︷︷ ︸
n− P

) 2P

 n

P


sn(h) (h, 1, 1, · · · , 1) n2n

(a) (b)

Figure 2.3: Cubature points in 3 dimensional cartesian space in different views

The next step is to select different combinations of mentioned points. It should be noted

that all the selected points on the same set of symmetric axes should be equidistant from

origin and should have equal weight. For each selected point, two unknown variables wi
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and ri are assigned which are weight and scaling variable, respectively. Finally, the moment

constraints equations for desired order of moments are derived in terms of unknown variables

ri’s and wi’s. Solutions of this set of equations results in the values of these variables. Note

that due to symmetrical properties of cubature points, the odd order moment constraints

equations are automatically satisfied. Hence, variables wi’s and ri’s can be found by solving

just the even order moment constraints equations. Note that different sets of cubature points

can be found depending on the order of moment constraint equations and dimension n. In

Refs. [44, 49], CUT scheme is employed to compute quadrature points of different order for

Gaussian and uniform density functions.

Fig. 2.4 represents the number of 8th order quadrature points required by different quadra-

ture schemes (CUT, Gauss-Legendre, Clenshaw-Curtis and Sparse Grid) for a uniformly dis-

tributed random vector versus the dimensionality of the random vector. From this figure,

it is clear that the growth of number of quadrature points with increase in dimensionality

according to the CUT methodology is much lower as compared to the Gauss-Legendre and

Clenshaw-Curtis. Furthermore, it is apparent that the CUT methodology requires less than

one half of quadrature points as required by the sparse grid Smolyak approach. For exam-

ple, 59 CUT quadrature points are required to satisfy 8th order moments in 3-dimensional

space as compared to 165 Sparse Grid quadrature points, 125 Gauss-Legendre quadrature

points and 729 Clenshaw-Curtis quadrature points. Hence, the CUT methodology can be

very useful in reducing the number of numerical model runs which needs to be performed

for accurate computation of prior statistics.
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Figure 2.4: Comparison of number of 8th order quadrature points required according to

different quadrature scheme versus dimension of random variable.

2.3 Approximation of Probability Maps

The problem of generating hazard maps corresponds to computing the probability of Quan-

tity of Interest (QOI), such as the amount of ash present in the atmosphere at a given

geographical location, given the probability distribution for model input parameters. The

accurate computation of probabilistic hazard map requires forward propagation of variability

in model input parameters, in order to compute the probability of the QOI at a specified

place and time. A simplistic approach to compute hazard maps entails running numerical

simulations with a range of input values, and computing the relative frequency of a QOI.

Unfortunately, a large number of realizations, depending on number of uncertain parame-

ters/initial conditions and model nonlinearities, are generally required to get a good conver-

gence in probability for the QOI using Monte Carlo simulations. This computational load

renders this simplistic approach impractical for many dynamic models. Instead one needs a

more judiciously chosen method for computing probabilities, recognizing the potential for a

trade-off between computational efficiency and the accuracy of probability computations.

In this work, we follow an approach outlined in Dalbey et. al. [39] in which the general-

ized Polynomial Chaos (gPC) methodology was employed to create a fast, computationally

cheap polynomial surrogate model , which is used to evaluate a large number of samples at
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minimal computational cost. In the standard gPC methodology, Galerkin collocation is used

to generate a system of deterministic differential equations for the expansion coefficients.

The Galerkin collocation step fails when applied to problems with non-polynomial non-

linearities, and can produce non-physical solutions when applied to hyperbolic equations.

Non-intrusive spectral projection (NISP) or stochastic collocation methods can overcome

these difficulties [50–52]. A different formulation of the NISP idea [39] known as polynomial

chaos quadrature (PCQ) is used here. PCQ replaces the projection step of NISP with nu-

merical quadrature. Thus our approach for computing the probability for a QOI involves (1)

computing coefficients of the polynomial surrogate model according to the PCQ formulation;

(2) sampling the surrogate at a large number of inputs at minimal computational cost. Let

us decribe this approach in more detail.

2.3.1 Polynomial Chaos Quadrature

Let x(t,Θ) ∈ Rn represent a vector of n quantities of interest which is a function of the

uncertain model parameter vector Θ = [θ1,θ2, · · · ,θm]T ∈ Rm. For example, in an ash

transportation problem due to volcanic eruption, the vector x might represent the height at

the top of an ash cloud and/or the ash concentration, at a specified geographical location,

and the parameter vector Θ might contain volcano source parameters like vent size, particle

velocity at the vent, and grain size distribution. Parameter vector Θ is assumed to be time

invariant, and a function of a standardized random vector ξ = [ξ1, ξ2, · · · , ξm]T ∈ Rm defined

by a pdf p(ξ) with support Ω. For instance, the uncertain model parameter vector Θ can

be assumed to be uniformly distributed random vector which lies in the range:

a ≤ Θ ≤ b (2.12)

where, a, b ∈ Rm are constant vectors. Hence, Θ can be written as a function of ξ consisting

of m standardized uniform random variables between −1 and 1:

θj =
aj + bj

2
+
bj − aj

2
ξj, j = 1, 2, · · · ,m (2.13)

If Θ is assumed to be Gaussian random vector with prescribed mean and covariance matrix,

then ξ can be a vector of Gaussian random variables with zero mean and identity covariance.

Note that Θ is not restricted to have uniform or Gaussian distribution. Ideally, it can have
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any prescribed distribution. Now, the QOI (e.g. ash top-height at a geolocation) can be

approximated as a linear combination of N + 1 polynomial functions of ξ:

xi(t,Θ) =
N∑
k=0

xik(t)φk(ξ) (2.14)

where, φk(ξ) are orthogonal polynomial basis function set with respect to p(ξ). One can use

the Gram-Schmidt orthogonalization to compute these basis function. Note that the total

number of terms in the expansion is N + 1 and is determined by the chosen highest order

(l) of basis polynomials φk(ξ) and the dimension of uncertain parameter vector Θ and it is

given as

N + 1 =
(l +m)!

m!l!
(2.15)

In general, according to the PCQ methodology, the uncertain QOI, x(t,Θ) and model

parameter Θ can be written as a linear combination of orthogonal polynomial basis functions,

φk(ξ), which span the space of random variables ξ = [ξ1, · · · ξm]T and results in following

polynomial surrogate model:

xi(t,Θ) =
N∑
k=0

xik(t)φk(ξ) = xTi (t)Φ(ξ)⇒ x(t, ξ) = Xpc(t)Φ(ξ), i = 1, 2, · · · , n (2.16)

θj(ξ) =
N∑
k=0

θjkφk(ξ) = θTj Φ(ξ)⇒ Θ(t, ξ) = ΘpcΦ(ξ), j = 1, 2, · · · ,m (2.17)

Here Xpc and Θpc are matrices composed of coefficients of the PC expansion for x and Θ.

The coefficients θik are obtained by making use of the normal equation:

θik =
E [θi(ξ)φk(ξ)]

E [φk(ξ)φk(ξ)]
(2.18)

In this expression, the expected value of a sufficiently smooth function u(ξ) is defined as:

E [u(ξ)] =

∫
u(ξ)p(ξ)dξ (2.19)

Similarly, the coefficients of xik ’s can be found from:

xik =
E [xi(t,θ(ξ))φk(ξ)]

E [φk(ξ)φk(ξ)]
(2.20)
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In our calculations, numerical quadrature replaces exact integration. Specifically, the inte-

grals in Eq. (3.29) and Eq. (2.20) can be written as:

E [φi(ξ)φj(ξ)] =

∫
φi(ξ)φj(ξ)p(ξ)dξ '

M∑
q=1

wqφi(ξ
q)φj(ξ

q) (2.21)

E [xi(t,θ(ξ))φj(ξ)] =

∫
xi(t,θ(ξ))φj(ξ)p(ξ)dξ '

M∑
q=1

wqxi(t, ξ
q)φj(ξ

q) (2.22)

E [θi(ξ)φj(ξ)] =

∫
θi(ξ)φj(ξ)p(ξ)dξ '

M∑
q=1

wqθi(ξ
q)φj(ξ

q) (2.23)

Notice that xi(t, ξ
q) represent the quantity of interest at time t with model parameter vector

being evaluated at ξq, where ξq corresponds to quadrature value of parameter vector ξ. That

is, numerical model (expressed by Eq. (2.1)) is solved for each input parameter vector ξq,

and the QOI is then computed from these simulations. The resulting method can be viewed

as a “smart” MC-like evaluation of the model equations, with sample points selected by

quadrature rules. Now, instead of performing intensive simulations, the polynomial surrogate

model Eq. (2.16) can be substituted in order to calculate the probability of the QOI at a

given location.

To summarize, given a specific location, the following algorithm can be used to compute

a hazard map for a QOI:

• Step 1: In the space of random variables, generate sampling points as combinations of

input parameters, treated as random variables, corresponding to the selected quadra-

ture scheme;

• Step 2: Perform a simulation at each sample point using the numerical model to

generate a map of the QOI, as a function of position;

• Step 3: Use Eq. (2.20) to compute the PC expansion coefficients corresponding to the

QOI, for each location;

• Step 4: Choose a large set of secondary sample points in the stochastic space, generated

from to the probability density function p(ξ).

• Step 5: Compute the QOI for each secondary sample point from the surrogate model.

• Step 6: Given the threshold thresh, compute the the relative frequency of QOI.
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• Step 7: Computed frequency is an approximation for probability of QOI to be greater

than or equal to thresh, denoted by Pr(QOI ≥ thresh).

2.4 Numerical Simulations

In this section, we provide two different examples to illustrate performance of the proposed

methodology in this chapter. The first example is about simulation of atmospheric dispersion

of Propane in neighborhood of New York city, while the second example illustrates dispersion

of Chlorine in neighborhood of city of Denver, Co. A Second-order Closure Integrated PUFF

(SCIPUFF) [53] is used to simulate atmospheric advection/dispersion for both examples. In

the following, we first briefly describe applied SCIPUFF numerical model and then numerical

simulations for each example are presented.

2.4.1 SCIPUFF Numerical Model

SCIPUFF [53] is a Lagrangian transport and diffusion model for atmospheric dispersion

applications. The acronym SCIPUFF stands for Second-order Closure Integrated PUFF

and describes two basic aspects of the model. SCIPUFF uses a Gaussian puff representation

for the concentration field of a dispersing contaminant. A three dimensional Gaussian is

completely described by its spatial integral moments up to second-order, and can be written

in the form:

c(x) =
Q

2π3/2[det(σ)]1/2
exp[−1

2
σ−1
ij (xi − x̄i)(xj − x̄j)] (2.24)

The specific Gaussian variation mentioned in Eq.2.24 applies to an individual puff, but

in general the local concentration field will be composed of a sum of contributions from a

number of such puffs.

The advection-diffusion equation for a scalar quantity in an incompressible flow field can

be written as:

∂c

∂t
+

∂

∂xi
(uic̄) = k∇2c+ S (2.25)
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where ui(x, t) is the turbulent velocity field, k is the molecular diffusivity, and S represents

the source terms.

The atmospheric velocity field is generally turbulent, so the Reynolds averaging technique is

used to define a mean and a turbulent fluctuation value. Denoting the mean by an overbar

and the fluctuation by a prime, we have u = ū + u′ , and a similar decomposition can be

applied to the concentration, c. The Reynolds averaged conservation equation for the mean

scalar concentration is thus:

∂c̄

∂t
+

∂

∂xi
(ūic̄) = −u′ic′

∂c̄

∂xi
+ k∇2c̄+ S̄ (2.26)

The dispersion of any species in a turbulent velocity field is a random process since the

turbulent fluctuations are effectively chaotic and cannot be measured or predicted in detail.

The scalar concentration is therefore a stochastic quantity, with a probability distribution

that depends on the distribution of velocity fluctuations. Traditional deterministic estimates

of atmospheric dispersion only provide a single concentration value as a function of space

and time, and this corresponds to the mean value, c̄ , for some definition of the statistical

ensemble. The mean value is the first moment of the probability distribution, and contains

no information about the statistical variability in the prediction. Higher moments are re-

quired to give a quantitative description of the variability. The probabilistic aspect of the

SCIPUFF dispersion prediction is based on a transport equation for the statistical variance

in the concentration value, that is the second moment of the probability distribution. The

concentration fluctuation variance equation can be obtained from the scalar mass conserva-

tion equation in the form:

∂c′2

∂t
+

∂

∂xi
(ūic̄′2) = −2u′ic

′ ∂c̄

∂xi
− ∂

∂xi
(u2

i c
′2)− 2k

¯
(
∂c′

∂xi
)2 + k∇2c̄′2 (2.27)

We emphasize in here that through out this dissertation, we assume that we have perfect

knowledge about the applied wind-field and all the turbulence in the wind-field in assumed to

be negligible. For detailed information regarding SCIPUFF numerical model, please see [53].

2.4.2 Test Case 1

Consider dispersion/advection of propane over New York city area. The domain of interest

and the applied wind-field (at one specific time) are shown in Fig. 2.5. Simulation time is
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considered to be 24 hrs., starting from 00 : 00 of September 1st, 2013. North American

Regional Reanalysis wind data at pressure level 100 kpa (height ' 100 m.) is used as the

corresponding wind-field for simulation. Three instantaneous mass releases are considered

where their location is known and the only uncertain parameters are their amount of mass

release. It is assumed that releases happen simultaneously at 00 : 00 of September 1st. All

mass releases are assumed to be uniformly distributed between 100 kg and 300 kg. Fig. 2.5

illustrates source locations and a snapshot of the wind-field (at t = 0 hrs.) over the two

dimensional spatial domain.
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Figure 2.5: Schematic layout of Propane release over New York region, source locations are

shown with purple circles, the wind-field (at t = 00 : 00 hr. and pressure level = 100 kPa)

is shown over the two dimensional domain with blue vector field. Geographical location of

different cities can be seen on the background map

A set of 59 eighth order CUT quadrature points (CUT8) are used to quantify the un-

certainty involved in concentration of dispersal material. Simulation of dispersion/advection

has been performed using SCIPUFF numerical model, where concentration of propane is

recorded every 10 mins. Applied CUT8 points are used to evaluate expected value and vari-

ance of concentration field (denoted by c) at each time step. Fig. 2.6 illustrates logarithm
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of expected value of concentration field (log(E [c])) at 12 hrs. and 24 hrs. after release time.

Note that logarithm of expected value has been used to better illustrate variability of con-

centration field over spatial domain. Similarly, Fig. 2.7 illustrates logarithm of standard

deviation of concentration field , denoted by log(std(c)), at 12 and 24 hrs. after release time.
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Figure 2.6: Logarithm of Expected value of concentration field at a) t = 12 : 00 hr., b)

t = 24 : 00 hr. after release instant.
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Figure 2.7: Logarithm of Standard deviation of concentration field at a) t = 12 : 00 hr., b)

t = 24 : 00 hr. after release instant.

Probability of concentration to be greater than or equal to thresh = 10−9gr/m3 is shown

in Fig. 2.8. We have used 5th order polynomial chaos expansion for approximation of concen-

tration field at each spatial location. Hence, there are totally (5+3)!
5!3!

= 56 terms in polynomial
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chaos expansion of concentration field whose coefficients have been found using Eq. (2.20).

Also, a number of 5 × 104 secondary sample points of ξ ∈ R3 are used for calculation of

corresponding probability maps.
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Figure 2.8: Pr(c > 10−9) a) t = 12 : 00 hr., b) t = 24 : 00 hr. after release instant.

2.4.3 Test Case 2

A more complicated scenario is being simulated as the last example. For simulation purposes,

we considered dispersion/advection of Chlorine over a three dimensional spatial domain in

neighborhood of city of Denver, Co. Simulation time is considered to be 10 hrs., starting

from 12 : 00 of June 6th, 2012. Three dimensional North American Regional Reanalysis

wind data and a 33× 46× 20 grid points were used to perform simulations over the spatial

domain. In our simulation, height variation is between 0 and 1000 m and a discretization

of 50 m in vertical direction is performed to consider the effect of the wind-field at different

heights. Fig. 2.4.3 illustrates projection of uncertain source location and a snapshot of the

wind-field (at height = 100 m. and t = 12 : 00 of June 6th) over the two dimensional spatial

domain.

Uncertain source parameters are assumed to be source location (lonsrc, latsrc, zsrc) and

mass release rate of chlorine (msrc). Source location is assumed to be uniformly distributed

over the region (lon, lat, z) ∈ ([−103.8,−103.5]×[39.45, 39.65]×[300, 400]). The mass release

rate of chlorine is considered to be uniformly distributed between 6 kg/min and 10 kg/min
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Figure 2.9: Schematic layout of Chlorine release over Denver region. Applied wind-field (at

initial time and pressure level = 100 kPa) is shown over the two dimensional domain with

blue vector field. Black rectangle illustrates projection of uncertain source location over

lon-lat plane. Geographical location of different cities can be seen on the background map.

and total release time is 1 hr. Table 2.3 illustrates uncertain parameters for Test Case 2.

Table 2.3: Uncertain parameters considered for dispersion of Chlorine over city of Denver,

Co.

Parameter Distribution/Range

lonsrc Uniform ∈ [−103.8,−103.5]

latsrc Uniform ∈ [39.45, 39.65]

zsrc Uniform ∈ [300, 400] m.

msrc Uniform ∈ [4, 10] kg/min

A set of 161 CUT8 quadrature points quadrature points are used to quantify the un-

certainty involved in concentration of pollutant material. Fig. 2.10 illustrates logarithm of

expected value of concentration field, denoted by log(E [c]), at t = 1 hr. after release time
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and at two different heights. We have used logarithm of expected value to better illustrate

the variability of concentration field over spatial domain. Similarly, Fig. 2.11 illustrates log-

arithm of expected value of concentration field (log(E [c])) at 10 hr. after release time and

at z = 100 m and z = 500 m. Comparison of Fig. 2.10 and Fig. 2.11 shows that the differ-

ence between expected value of concentration field at z = 100 m. and z = 500 m is almost

negligible.
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Figure 2.10: Logarithm of Expected value of concentration field at t = 1 : 00 hr. after release

at different heights a) z = 100 m., b) z = 500 m.

Fig. 2.12 and Fig. 2.13 represent logarithm of standard deviation of concentration field,

denoted by log(std(c)), at 1 hr. and 10 hr. after release time. Similar to expected value of

concentration field, comparison of Fig. 2.12 and Fig. 2.13 shows that the difference between

standard deviation of concentration field at z = 100 m. and z = 500 m is almost negligible.

Fig. 2.14 and Fig. 2.15 show probability of concentration to be greater than or equal to

thresh = 10−10gr/m3 over spatial domain and at different times. We have used 6th order

polynomial chaos expansion for approximation of concentration field at each spatial location.

Hence, there are totally (6+4)!
6!4!

= 210 terms in polynomial chaos expansion of concentration

field whose coefficients have been found using Eq. (2.20). A number of 5 × 104 secondary

sample points of ξ ∈ R4 were used for calculation of corresponding probability maps.
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(a) log(E [c]) at time 10 : 00 hr. and z = 100 m.
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Figure 2.11: Logarithm of Expected value of concentration field at t = 10 : 00 hr. after release

at different heights a) z = 100 m., b) z = 500 m. Black rectangle represents projection of

uncertain source location over lon-lat plane.
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Figure 2.12: Logarithm of standard deviation of concentration field at t = 1 : 00 hr. after

release at different heights a) z = 100 m., b) z = 500 m. Black rectangle represents projection

of uncertain source location over lon-lat plane.
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Figure 2.13: Logarithm of standard deviation of concentration field at t = 10 : 00 hr. after

release at different heights a) z = 100 m., b) z = 500 m. Black rectangle represents projection

of uncertain source location over lon-lat plane.

−105 −104.5 −104 −103.5 −103
39

39.2

39.4

39.6

39.8

40

40.2

40.4

40.6

40.8

41

lon

la
t

 

 

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Greeley
Fort
Morgan

Denver

North Sterling 
State Park

(a) z = 100 m.

−105 −104.5 −104 −103.5 −103
39

39.2

39.4

39.6

39.8

40

40.2

40.4

40.6

40.8

41

lon

la
t

 

 

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Greeley
Fort
Morgan

Denver

North Sterling 
State Park

(b) z = 500 m.

Figure 2.14: Pr(c > 10−10) at t = 1 : 00 hr. after release at a) z = 100 m., b) z = 500 m.

Black rectangle represents projection of uncertain source location over lon-lat plane.

2.5 Summary

In this chapter, we presented mathematical details for uncertainty quantification of dynam-

ical systems in presence of parametric uncertainty. In Section 2.2 we discussed the method
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Figure 2.15: Pr(c > 10−10) at t = 10 : 00 hr. after release at a) z = 100 m., b) z = 500 m.

Black rectangle represents projection of uncertain source location over lon-lat plane.

of quadrature points for evaluation of prior statistics of model output due to presence of un-

certain parameters. As well, we utilized a polynomial chaos surrogate model to approximate

hazard maps of QOI in Section 2.3. The major benefit of utilized technique for approxi-

mation of hazard maps lies in its considerable computational performance with respect to

simple Monte Carlo approach. We verified performance of the method of quadrature points

and introduced technique for approximation of hazard map by two numerical simulations.

Simulation results for both examples demonstrates computational advantage and accuracy

of discussed methods. Note that we used a recently developed Conjugate Unscented Trans-

form technique to generate corresponding quadrature points for our numerical simulations.

The major benefit of CUT methodology is that it employs small fraction of quadrature

points used by traditional Gaussian quadrature scheme, while being efficient and accurate

in evaluation of integrals.

In the next Chapter, we discuss about fusion of prior statistic, evaluated by the help

of the method of quadrature points, with measurement data, which is obtained from data

observation sensors. wind-field
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Chapter 3

Source Parameter Estimation

3.1 Introduction

In the previous chapter, the method of quadrature points was discussed in detail as a tool

to evaluate prior statistics of the model output at every time, given parametric or initial

condition uncertainty. The use of observational data to refine the dynamical model forecast

so as to reduce the associated uncertainty is a logical improvement over purely model-based

predictions. Hence, one can fuse both model forecasts and observational data to improve the

level of confidence in uncertain parameters and model forecasts in future time steps.

Different algorithms exist in literature that are used to fuse model forecast information

and observational data for better estimation of uncertain parameters. In the context of

plume dispersion phenomenon, these algorithms can be divided into two different categories:

optimization based methods and probabilistic methods. The main idea of optimization based

methods is to find the source location in such a way that it minimizes the difference between

the observed data and model prediction [54–57]. Haupt et al. [58] presented a Genetic

Algorithm based method for source characterization in plume dispersion phenomenon. In

her method, source terms are obtained by minimizing the normalized difference between the

measurement data and model predicted data. Allen et al. [59] applied the method developed

by Haupt to the cases with noisy measurement. In another research, Allen et al. [54] extended

his Genetic Algorithm based approach to characterize the source terms along estimation of

wind direction. Similarly, Long et al. [60], presented a Genetic Algorithm based approach to

identify the basic source term information by minimizing a slightly different cost function.
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He also extended his method to find other information about the source like source height,

source strength, surface wind direction, surface wind speed, and time of release that produces

a concentration field [55]. Note that optimization based methods extremely depend on the

applied initial value for optimization, specially in non-convex optimization. However, most of

the presented methods apply Genetic Algorithm to guarantee global minimization. Another

major drawback of optimization based methods is that all of them provide only a point

estimate of uncertain parameters and there is no uncertainty bounds associated with these

estimates.

On the other hand, probabilistic methods provides posterior estimate of source parame-

ters along with their associated uncertainty bounds, depending on accuracy of the model and

observational data. Different probabilistic methods are developed for source identification

in hazardous chemical releases [5,61–63]. These methods can be divided into three different

categories: Kalman based methods [4, 5], Bayesian Monte Carlo (BMC) method [6], and

Bayesian Markov Chain Monte Carlo (BMCMC) technique [7].

Kalman filtering methods provide posterior mean and variance of source parameters

based on linear combination of prior statistics (mean and covariance) and observation data.

Kalman Filtration method is used in many atmospheric release applications for source char-

acterization purposes [64–69].

There are major assumptions in derivation of Kalman Filter which restrict its applica-

bility for general problems. The first restriction of Kalman Filter is that it assumes the

uncertainties involved in prior distribution and associated noise signal in observational data

to be Gaussian, which is usually far from reality. For instance, amount of a release from

a source is always a positive quantity and can not be assumed to be normally distributed.

Similarly, associated noise signal in data observation can not be considered to be Gaussian

always. The other restriction that is embedded in Kalman Filter is the linearity assumption

for the structure of dynamic model and observation model. Most of the time, the observation

and dynamic model are nonlinear function of model parameters Θ. Hence, the assumption

of linearity for observation and dynamic model is really restrictive. One way to alleviate this

restriction is to utilize Extended Kalman Filter [70], which linearizes dynamic and observa-

tion model and then uses Kalman update equations. However, the linearization in Extended

Kalman Filter may result in convergence issues in case of highly nonlinear dynamic systems

or observation models, or in case of sparse measurement updates.
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The basic idea of Bayesian Monte Carlo is to make use of Bayesian inference framework

and Monte Carlo simulations. In this approach, numerical model is simulated for a large set of

Monte Carlo samples, which are generated based on prior distribution of source parameters.

Then, only those Monte Carlo samples whose outputs are consistent with observation are

preserved.

There have been multiple researches regarding application of BMC approach for source

characterization of plume dispersion incidents. Sohn et al. [21] applied BMC method for

source localization of atmospheric release in building environment. His work includes some

pre-event planning phase in which he simulates the atmospheric release numerical model

for many Monte Carlo samples of parameter realizations, given prior distribution of Θ and

store simulation data in a library of model simulations. Then in event of a release, he uses

Bayesian Inference framework to rapidly find the realizations of parameter Θ which are

the most consistent with observational data. Even though Bayesian Inference can be imple-

mented rapidly, but this approach requires pre-event planning which can be computationally

expensive. In addition, there is no convergence criteria for deciding the number of required

Monte Carlo realizations of parameter Θ. In a similar research by Sreedharan [22], Bayesian

interpretation approach is utilized to characterize an indoor release using threshold sensor

data. Similar strategy proposed by Sohn et al. [21] is being applied in this paper, while using

different environment and different data observation sensors. Deguillaume et al. [71] applied

BMC method for estimation of emission of NOx and volatile organic compounds over the

Ile-de-France region. Similar to previous works, his method consists in performing a large

number of successive simulations with the same model but with a distinct set of model input

parameters at each time. Then a posteriori weights are attributed to individual Monte Carlo

simulations by comparing them with observations from the sensor network.

Bayesian Markov Chain Monte Carlo approach is another alternative that can be used to

alleviate computational complexities involved in BMC method. In BMCMC, Monte Carlo

samples are replaced with Markov Chain Monte Carlo samples. Hence, less number of

numerical simulations is needed to get the same approximation for posterior distribution

of source parameters. However, still large number of simulations is required to accurately

approximate posterior distribution of source parameters. In addition, generating MCMC

samples in high dimensions can still be computationally expensive.

Due to mentioned privilege of BMCMC with respect to BMC, there have been more
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concentration on application of BMCMC in source characterization of atmospheric release

incidents. Keats et al. [23] and Yee et al. [72] applied BMCMC approach in conjunction with

adjoint based source-receptor relationship for source characterization of atmospheric release

incidents in different experimental setups. However, some restrictive assumptions were con-

sidered in these works. For instance, associated noise and model error were considered to be

normally distributed, which is different from reality in atmospheric release phenomena.

Johanesson et al. [24,73] have a comprehensive article regarding application of BMCMC

for source characterization of plume dispersion incidents. This report provides an introduc-

tion to a Bayesian probabilistic approach to modeling a dynamic system, with emphasis on

stochastic methods for posterior inference. In addition, an overview is given about differ-

ent sampling algorithms like Markov chain Monte Carlo (MCMC) approach and sequential

Monte Carlo (SMC) approach. Finally some numerical simulations are provided, to represent

application of BMCMC to source parameter estimation of an atmospheric release.

BMCMC is used in similar researches for source characterization of plume dispersion

incidents [74–77]. For more detail about application of Bayesian Inference methods (BMC

and BMCMC), please see [3] and [78].

In the end, we emphasize that the associated noise of measurement data is considered

to be normally distributed in most of mentioned applications of BMCMC, which is against

realistic assumptions. In addition, one should note that performing Markov Chain Monte

Carlo sampling for obtained posterior distribution can be computationally intractable in

presence of large dimensions for parameter Θ.

To summarize, Fig. 3.1 represents pros and cons of applied methods for source parameter

estimation. For a more comprehensive review of the optimization based and probabilistic

based methods for source characterization problem in plume dispersion phenomenon, please

refer to [78] and [3].

In this Chapter, we utilize two different estimation techniques, recently developed by

Madankan et al. [18], for estimation purpose. First, we describe mathematical details for

a minimum variance based estimation approach in Section 3.2. Then, theoretical basis

for Bayesian estimation method is explained in Section 3.3. In Section 3.4, we describe

a methodology for reconstruction of posterior distribution of estimated parameters, based

on polynomial chaos surrogate model. Performance of introduced estimation methods is

demonstrated by some numerical simulations in Section 3.5. In the end, we summarize this
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Probabilistic Source Characterization Methods 

for Plume Dispersion Incidents 

Bayesian MC Kalman Filtration Methods 

Pros: 

- Provides close form 

solution for posterior 

mean and covariance of 

parameters. 

 

- Ease of implementation 

Cons: 

- Gaussian assumption for 
uncertain parameters and 
associated process and 
measurement noise 
 

- Assumption of linearity 
for dynamic and 
observation model 

 

Pros: 

- Applicable to any type of 
distribution  
 

- Provides approximation of 
posterior distribution of 
uncertain parameters. 

Cons: 

- Complete knowledge of 
associated noise is needed. 
 

- Large number of Monte 

Carlo simulations is needed 

to have a reasonable 

approximation of posterior 

pdf of uncertain parameters. 

- Associated computational 

cost. 

 

-  

Bayesian MCMC 

Cons: 

- Computational cost in 

generating Markov Chain 

Monte Carlo samples can 

be prohibitive in presence 

of large number of 

uncertain parameters. 

Pros: 

- Applicable to any type of 
distribution  
 

- Provides approximation of 
posterior distribution of 
uncertain parameters. 
 

- Uses Markov Chain Monte 
Carlo sampling techniques 
to approximate posterior 
distribution of uncertain 
parameter. 
 

- Uses adjoint methods to 
avoid the computational 
cost involved in forward 
propagation. 

Figure 3.1: Classification of different source characterization methods for atmospheric release

incidents

chapter by discussing the differences and benefits of each of the proposed methods in Section

3.6.

3.2 Minimum Variance Estimation

To describe the minimum variance estimation framework, once again consider a dynamical

model given by Eq. (2.1), i.e.

ẋ = f(t,x,Θ)
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Now, let us assume the following sensor model for data observation:

yk , y(tk) = h(xk,Θ) + νk (3.1)

where, yk ∈ Rb is observed sensor data and the nonlinear function h(·) captures the sensor

model and νk is the measurement noise with zero mean and covariance matrix R ∈ Rb×b.

We are interested in a linear and unbiased minimum variance estimation framework which

minimizes the trace of the posterior parameter covariance matrix:

J = min
Θ

Tr
[
E [(Θ− E [Θ])(Θ− E [Θ])T ]

]
(3.2)

It should be noted that the minimum variance formulation is valid for any pdf, although the

formulation makes use of only the mean and covariance information. As well, it provides the

maximum a-posteriori estimate when model dynamics and measurement model is linear and

state uncertainty is Gaussian.

Minimizing the cost function J subject to the constraint of being an unbiased estimate,

and using linear updating, allows us to compute the first two moments of the posterior

distribution [18,79]:

Θ̂+
k = Θ̂−k + Kk[yk − E−[h(xk,Θ)]] (3.3)

Σ+
k = Σ−k + KkΣθy (3.4)

where, superscripts − and + denotes prior and posterior value of corresponding variable. In

this update, the gain matrix K is given by:

Kk = ΣT
θy

(
Σ−hh + Rk + Qk

)−1
(3.5)

Note that Θ̂−k represents the prior mean for the parameter vector Θ while incorporating

measurements up to time interval tk−1 and Θ̂+
k represents the posterior mean for parameter

vector Θ while incorporating measurements up to time interval tk:

Θ̂−k , E−[Θk] =
∫
ξ
Θ−k (ξ)p(ξ)dξ (3.6)

Θ̂+
k , E+[Θk] =

∫
ξ
Θ+
k (ξ)p(ξ)dξ (3.7)
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Similarly, prior and posterior covariance matrices Σ−k and Σ+
k can be written as:

Σk
− , E−[(Θk − Θ̂−k )(Θk − Θ̂−k )T ] =

∫
ξ

(Θ−k (ξ)− Θ̂−k )(Θ−k (ξ)− Θ̂−k )Tp(ξ)dξ ∈ Rm×m

(3.8)

Σk
+ , E+[(Θk − Θ̂+

k )(Θk − Θ̂+
k )T ] =

∫
ξ

(Θ+
k (ξ)− Θ̂−k )(Θ+

k (ξ)− Θ̂−k )Tp(ξ)dξ ∈ Rm×m

(3.9)

Also, Qk denotes the model error covariance matrix in Eq. (3.5) which encapsulates the

model’s inaccuracies. The matrices Σθy and Σhh are defined as:

ĥ−k , E−[h(xk,Θ)] =

∫
ξ

h(x−k (ξ),Θ−(ξ))︸ ︷︷ ︸
hk

p(ξ)dξ (3.10)

Σθy , E−[(Θ− Θ̂k)(hk − ĥ−k )T ] =

∫
ξ

(Θ−(ξ)− Θ̂−k )(hk − ĥ−k )Tp(ξ)dξ (3.11)

Σ−hh , E
−[(hk − ĥ−k )(hk − ĥ−k )T ] =

∫
ξ

(hk − ĥ−k )(hk − ĥ−k )Tp(ξ)dξ (3.12)

Here again, the expectation integrals in Eq. (3.10), Eq. (3.11), and Eq. (3.12) can be com-

puted by suitable quadrature rules:

ĥ−k , E−[h(xk,Θ)] '
M∑
q=1

wq h(xk(ξ
q),Θ(ξq))︸ ︷︷ ︸
hq

(3.13)

Σθy , E−[(Θk − Θ̂k)(h(xk,Θ)− ĥ−k )T ] '
M∑
q=1

wq(Θk(ξ
q)− Θ̂−k )(hq − ĥ−k )T (3.14)

Σ−hh , E
−[(h(xk,Θ)− ĥ−k )(h(xk,Θ)− ĥ−k )T ] '

M∑
q=1

wq(hq − ĥ−k )(hq − ĥ−k )T (3.15)

Again we point out that hq represents computational measurements corresponding to simu-

lation runs with input parameter determined by ξq.

3.3 Bayesian Inference

To describe Bayesian inference framework, let us assume the following sensor model for data

observation:

yk , y(tk) = h(xk,Θ, νk) (3.16)
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where, yk ∈ Rb is observed sensor data and the nonlinear function h(·) captures the sensor

model which is a function of state xk, parameter Θ, and measurement noise νk. Note that

probability density function (pdf) of νk is given by p(νk).

One should notice the difference between applied observation model for minimum vari-

ance framework and Bayesian framework. In minimum variance estimation framework, the

observation model, i.e. Eq. (3.1), is an linear function of noise signal ν. Also, the knowledge

of only mean and covariance of the noise signal is enough for parameter estimation. On the

other hand, the observation model in Bayesian inference framework, i.e. Eq. (3.16), can be

a nonlinear function of noise signal in general. In addition, complete knowledge of proba-

bility density function (pdf) of noise signal is required for parameter estimation purposes in

Bayesian inference framework.

Given observation data yk and using Bayes’ theorem, posterior distribution of Θ can be

written as:

p(Θ|yk) =
p(Θ)p(yk|Θ)

p(yk)
(3.17)

where, p(Θ) is prior distribution of parameter Θ, p(yk|Θ) is likelihood of measurements

given the parameter, and p(yk) is probability of measurements, which is equal to:

p(yk) =

∫
Θ

p(yk|Θ)p(Θ)dΘ = EΘ{p(yk|Θ)} (3.18)

Note that posterior moments of Θ can be computed by multiplication of appropriate

functions of Θ in Eq. (3.17) and integrating with respect to Θ [18]. For instance, posterior

mean of Θ, denoted by Θ̂+, can be computed as:

Θ̂+ = EΘ{Θ} =

∫
Θ

Θp(Θ)p(yk|Θ)dΘ

EΘ{p(yk|Θ)}
=
EΘ{Θp(yk|Θ)}
EΘ{p(yk|Θ)}

(3.19)

Similarly, posterior second order moment of Θ, denoted by P+, can be obtained as:

P+ =

∫
Θ

ΘΘTp(Θ|yk)dΘ =
EΘ{ΘΘTp(yk|Θ)}
EΘ{p(yk|Θ)}

(3.20)

Note that posterior value of covariance of Θ, denoted by Σ+, is obtained as:

Σ+ = P+ − Θ̂+Θ̂+T (3.21)
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Likewise, higher order posterior moments of parameter Θ, denoted by E+{φ(Θ)}, can be

written as:

E+{φ(Θ)} =

∫
Θ

φ(Θ)p(Θ|yk)dΘ =
EΘ{φ(Θ)p(yk|Θ)}
EΘ{p(yk|Θ)}

(3.22)

where,

φ(Θ) =
m∏
i=1

θnii , ni ≥ 0 (3.23)

Similar to minimum variance estimation method, quadrature points are used to evaluate

expected values in Eq. (3.19), Eq. (3.20) and Eq. (3.22). i.e.

EΘ{Θp(yk|Θ)} '
Nq∑
q=1

wqΘ(ξq)p(yk|Θ(ξq)) (3.24)

EΘ{ΘΘTp(yk|Θ)} '
Nq∑
q=1

wqΘ(ξq)ΘT (ξq)p(yk|Θ(ξq)) (3.25)

EΘ{p(yk|Θ)} '
Nq∑
q=1

wqp(yk|Θ(ξq)) (3.26)

Eφ(Θ){φ(Θ)p(yk|Θ)} '
Nq∑
q=1

wqΘ(ξq)p(yk|Θ(ξq)) (3.27)

where, Θ(ξq) represents the quadrature value of the parameter vector Θ, which is obtained

according to prior pdf p(Θ) and wq is the weight of quadrature point Θ(ξq), corresponding

to the applied quadrature scheme.

3.4 Reconstruction of Posterior Distribution

The posterior statistics obtained from Bayesian Inference or Minimum Variance framework

can be used to approximate the posterior distribution of parameter Θ. This can be achieved

by making use of Generalized Polynomial Chaos (gPC) Theory [31] [27].

As mentioned in Section 2.3, the uncertain system parameter Θ can be written as a linear

combination of basis functions, φk(ξ), which span the stochastic space of random variables
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ξ = [ξ1, · · · ξm]T :

θi(ξ) =
N∑
k=0

θikφk(ξ) (3.28)

The coefficients θik are obtained by making use of following normal equation:

θik =
E [θi(ξ)φk(ξ)]

E [φk(ξ)φk(ξ)]
(3.29)

Note that the integrals involved in Eq. (3.29) can be evaluated using quadrature scheme, i.e.

E [φi(ξ), φj(ξ)] '
M∑
q=1

wqφi(ξq)φj(ξq) (3.30)

E [θi(ξ), φj(ξ)] '
M∑
q=1

wqθi(ξq)φj(ξq) (3.31)

One can update the polynomial expansion coefficients of Eq. (3.28) on the arrival of

measurement data as described in [18]. To illustrate this in more detail, let us denote denote

prior and posterior values of polynomial chaos coefficients of parameter θi, with θ−ik and θ+
ik

,

respectively. Assuming basis functions φk(ξ) to be orthonormal, one can write prior and

posterior statistics of parameter θi in terms of prior and posterior values of its polynomial

chaos coefficients. For instance, prior and posterior mean of θi can be written as:

E−[θi] = θ−i1 , i = 1, 2, · · · ,m (3.32)

E+[θi] = θ+
i1
, i = 1, 2, · · · ,m (3.33)

Similarly, each element of prior and posterior covariance of parameter Θ can be written as:

Σ−k (i, j) =
N∑
l=0

θ−il θ
−
jl
, i = 1, 2, · · · ,m, , j = 1, 2, · · · ,m (3.34)

Σ+
k (i, j) =

N∑
l=0

θ+
il
θ+
jl
, i = 1, 2, · · · ,m, , j = 1, 2, · · · ,m (3.35)

One can equate obtained posterior statistics from gPC expansion of parameter Θ with

posterior statistics obtained from minimum variance or Bayesian estimation methods [18].

This results in a set of nonlinear algebraic equations which can be solved to find posterior
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coefficients of gPC expansion of Θ:

θ+
i1

= Θ̂+
i , i = 1, 2, · · · ,m (3.36)

N∑
l=0

θ+
il
θ+
jl

= Σ+
k (i, j), i, j = 1, · · · ,m (3.37)

Notice that Eq. (3.36) directly results in values of Θ+
pc1

components, while Eq. (3.37) provides

m2 equations for remaining mN unknown coefficients. Depending on order of applied PC

expansion and dimension of Θ, obtained set of equations can be over determined, determined,

or under determined. Different approaches like nonlinear least square method can be used

to solve Eq. (3.37) in case of over determined set of equations, while for under determined

set of equations, regularization techniques can be used to find a solution for the posterior

coefficients of polynomial expansion.

3.5 Numerical Simulations

3.5.1 Test Case 1

For the first example, once again source parameter estimation of dispersion/advection of

propane is simulated over New York area by using Bayesian Inference framework. The

domain of interest and the applied wind-field (at one specific time) are shown in Fig. 3.2.

Simulation time is considered to be 24 hrs., starting from 00 : 00 of September 1st, 2013.

North American Regional Reanalysis wind data at pressure level 100 kpa (height ' 100 m.)

is used as the wind-field for simulation. Three instantaneous mass releases are considered

where their location is known and the only uncertain parameters are their amount of mass

release. It is assumed that releases happen at the same time, i.e. all source releases happen

at 00 : 00 of September 1st. All mass releases are assumed to be uniformly distributed

between 100 kg and 300 kg, as shown in Table 3.1.

As explained in Test Case 1 in Section 2.4.2, a set of 59 CUT8 quadrature points are

used to quantify the uncertainty involved in concentration of dispersal material. Also, a 6th

order gPC expansion is used to reconstruct distribution of parameters after each update.

Simulation of dispersion/advection has been performed using SCIPUFF numerical model,

where concentration of propane is recorded every 10 mins. and measurement update is

implemented every one hour.
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Figure 3.2: Schematic layout of Propane release over New York region, source locations are

shown with purple circles, the wind-field (at t = 0 hr and pressure level = 100 kPa) is shown

over the two dimensional domain with blue vector field. Position of stationary sensors are

shown with square markers. Geographical location of different cities can be seen on the

background map

Table 3.1: Test Case 1: Uncertain source parameters. Actual values of parameters represent

the values which are used to generate the synthetic measurement data.

Parameter Distribution/Range Actual value (kg)

m1src Uniform ∈ [100, 300] 166.2

m2src Uniform ∈ [100, 300] 246.04

m3src Uniform ∈ [100, 300] 274.3

Sensor Model

The sensor used for the measurements is a bar sensor with a discrete numbers of bars. The

number of bars ranges from zero to fifteen. These bar readings indicate the concentra-

tion magnitude at sensor location at the instant of data observation. The sensor displays

z = 0, · · · , 15, when the internal continuous-valued concentration magnitude xint is be-
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tween thresholds Tz and Tz+1, where 0 ≤ Tz < Tz+1. The thresholds Tz’s are defined on a

logarithmic scale, i.e. Tz ∈ {0, 5× 10−14, 10−13, 5× 10−13, 10−12, · · · , 5× 10−7}.
In here, we assume that each sensor reading is polluted with a discrete error, denoted by

e, which is uniformly distributed over the set {−1, 0, 1}. Hence, measurement model can be

written as:

zk , z(tk) = h(xk,Θ) + ek (3.38)

where,

r = E[eeT ] =
2

3

Note that function h(.) captures all discretizations involved in sensor model, i.e.

h(xk,Θ) ∈ {0, 1, 2, · · · , 15} (3.39)

We use the minimum variance framework, described in Section 3.2, to find the first two

posterior statistics of source parameters. As set of 25 sensors are used to perform the task

of data observation. Fig. 3.5 illustrates source locations and the wind-field (at t = 0 hrs.)

over the two dimensional spatial domain.

Fig. 3.3 illustrates mean and variance of parameter estimates during the time while using

minimum variance estimation method. It is clear from from Fig. 3.3 that the mean estimate

of the source parameters converges to actual value of the parameters and the variance of

parameter estimates reduces during the time, which means more confident estimates source

parameters over the time. One should note that parameter estimates don’t change after

t = 18 hrs. This is due to the fact that after t = 18 hrs., no concentration of propane is

measured by applied sensors and all sensor readings agree with model forecast. Hence, there

will not be any change in statistics of parameter estimates after this time.

Finally, Fig. 3.4 illustrates distributions of uncertain parameters at final time, which

are reconstructed by help of a 6th order polynomial chaos surrogate model, as described in

Section 3.4. Comparison of posterior and prior distributions of source parameters clearly

demonstrates performance of minimum variance framework in estimation of source parame-

ters.
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Figure 3.3: Test Case 1: Mean and variance of source parameter estimates during the time,

obtained by using minimum variance estimation framework.

46



Reza Madankan Source Parameter Estimation

100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

m
1

p(
m

1)

 

 

Posterio distribution
m

1,act

Prior distribution

(a) m1

100 150 200 250 300
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

m
2

p(
m

2)
 

 

Posterio distribution
m

2,act

Prior distribution

(b) m2

100 150 200 250 300
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

m
3

p(
m

3)

 

 

Posterio distribution
m

3,act

Prior distribution

(c) m3

Figure 3.4: Test Case 1: Posterior distribution of source parameters at t = 24 hr. versus

their prior distribution, obtained by minimum variance estimation method and a 6th order

polynomial chaos surrogate model. Dashed green line shows actual value of parameters
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3.5.2 Test Case 2

Similar to first example, again, dispersion/advection of propane over New York area is sim-

ulated, but Bayesian Inference framework and different type of data observation sensor are

used for source parameter estimation. In the following, we first describe applied sensor model

and then simulation results while using Bayesian Inference framework are presented for two

different layout of data observation sensors.

Sensor Model

The sensor used for the measurements is a bar sensor with a discrete numbers of bars, which

is slightly different from the one used in [80]. The number of bars ranges from zero to fifteen.

These bar readings indicate the concentration magnitude at sensor location at the instant of

data observation. The sensor displays z = 0, · · · , 15, when the internal continuous-valued

concentration magnitude xint is between thresholds Tz and Tz+1, where 0 ≤ Tz < Tz+1.

The thresholds Tz’s are defined on a logarithmic scale, i.e. Tz ∈ {0, 5 × 10−14, 10−13, 5 ×
10−13, 10−12, · · · , 5× 10−7}.

Properties of the sensor are determined by these thresholds and properties of xint, which is

assumed to be normally distributed about the true concentration x [80]. Measurement error

v = xint - x may be considered a combination of multiplicative noise and additive noise with

mean zero and standard deviation
√
R(x) = σ(x) = ax + b where a is the proportionality

constant and b accounts for the thermal motion of the electrons in the components [80]. In

practice, because the true value of x is never known, σ(x) is usually approximated by σ(x̃),

where x̃ is an estimate of x. a is equal to 1 and b = 10−15 in our simulations. Also, it is

assumed that x̃ = Tz, where Tz is the sensor bar corresponding to xint. Probability density

function of xint given the corresponding concentration x is:

p(xint|x) = N (xint; x, R) =
1√
2πR

e−
(xint−x)2

2R (3.40)

where, N (, ; ., .) denotes a Gaussian probability density function with the mean and variance

specified by its second and third arguments. Strictly speaking, p(xint|x) is not a Gaussian

distribution because it is only defined for non-negative values of xint. Following Eq. (3.40),

likelihood function, or simply probability of z conditioned on x, is determined by the following
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integral:

P (z|x) ∝
∫ Tz+1

Tz

p(xint|x)dxint,
∑
z

P (z|x) = 1 (3.41)

As mentioned before, sensor readings are polluted with some error, due to internal random

variable and quantization effect. It is clear that when the number of thresholds goes to

infinity and the length of intervals between two thresholds goes to zero, the sensor output

becomes continuous and the likelihood function reduces to the (truncated) Gaussian distribu-

tion defined by Eq. (3.40). When the uncertainty due to internal random variable vanishes,

likelihood function is flat over the interval [Tz, Tz+1] associated with z and zero elsewhere.

Bayesian Inference is used to find the first two posterior statistics of source parameters.

Note that CUT8 quadrature points are used to perform integrations involved in Eq. (3.19)

and Eq. (3.20). Two different sensor orientations are used for source parameter estimation.

Simulation results for each of these layouts are described in the following.

Orientation A

Fig. 3.5 illustrates source locations and the wind-field (at t = 0 hrs.) over the two dimensional

spatial domain. Similar to Test Case 1, a number of 25 sensors are used for data observation

purpose, which are shown in Fig. 3.5.
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Figure 3.5: Test Case 2: Schematic layout of data observation sensors for orientation A
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Convergence behavior for the mean and variance of parameter estimates using 25 sta-

tionary sensors are shown in Fig. 3.6. It can be seen from Fig. 3.6 that mean estimate of

source parameters converges to their actual values and associated variance with these esti-

mates reduces along the time. Comparison of obtained statistics for parameter estimates,

using Bayesian Inference and the minimum variance framework shows that the minimum

variance estimation method results in less variance (more confident estimates) for parameter

estimates. This is due to the fact that the minimum variance framework is designed to

minimize posterior covariance of parameter estimates. Hence, it always results in minimal

value of the variance, in comparison with other estimation methods like Bayesian Inference

approach.

Fig. 3.7 represents distribution of uncertain parameters at the final time, reconstructed

by the help of a 6th order polynomial chaos surrogate model, as described in Section 3.4.

Similar to the minimum variance estimation method, Fig. 3.7 shows that using Bayesian

Inference method improves the confidence of posterior estimates of source parameters.
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Figure 3.6: Test Case 2, Orientation A: Mean and variance of source parameter estimates

during the time, obtained by using Bayesian Inference framework and 25 stationary sensors.
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Figure 3.7: Test Case 2, Orientation A: Posterior distribution of source parameters at t =

24 hr. versus their prior distribution, obtained by Bayesian Inference method and a 6th order

polynomial chaos surrogate model. Dashed green line shows actual value of parameters
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Orientation B

To highlight the role of sensor placement, we have verified performance of estimation ap-

proach using different sensor layouts. In particular, we considered just three data observation

sensors for Orientation B, whose locations are shown in Fig. 3.8, while all the other param-

eters are similar to Orientation A.
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Figure 3.8: Test Case 2: Schematic layout of data observation sensors for orientation B

Convergence behavior for the mean and variance of source parameters estimates using

three stationary sensors, is shown in Fig. 3.9. Fig. 3.9 illustrates that using this specific

layout of stationary sensors results in poor estimates of the parameters. This is due to the

inefficient placement of sensors during the data assimilation process.

Distribution of uncertain parameters at the final time while using 3 sensors are also shown

in Fig. 3.10. As one can see, posterior distributions of parameters are not very confident

and there exist large amount of uncertainty involved in these estimates. This is due to poor

placement of data observation sensors. Hence, optimal placement of data observation sensors

is of high importance for accurate parameter estimation of distributed systems.

3.6 Summary

In this chapter, we utilized two recently developed parameter estimation methods by Madankan

et al. [18] for source characterization of atmospheric release incidents. In the minimum vari-
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Figure 3.9: Test Case 2, Orientation B: Mean and variance of source parameter estimates

during the time, obtained by using Bayesian Inference framework and 3 stationary sensors.
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Figure 3.10: Test Case 2, Orientation B: Posterior distribution of source parameters at

t = 24 hr. versus their prior distribution, obtained by Bayesian Inference method and a 6th

order polynomial chaos surrogate model. Dashed green line shows actual value of parameters

ance estimation framework, posterior estimate of the mean and covariance of uncertain

parameters are provided based on model forecast and observational data. Note that there

is no restrictive assumption for distribution of uncertain parameters and associated noise in

measurement data while making use of the minimum variance estimation framework. The

only restriction of the minimum estimation framework is that observation operator should be

an affine function of associated noise signal. Hence, using the minimum variance framework

is not straightforward in presence of observation operators which are nonlinear function of

noise signal. Also, first two statistics of associated noise signal should be known while using
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minimum variance estimation method.

On the other hand, Bayesian Inference method can be used to estimate posterior statistics

of uncertain parameters up to a desired order. In addition, there is no restriction regarding

structure of observation operator while using Bayesian inference framework. Hence, Bayesian

inference method can be applied in more general conditions, comparing to minimum variance

framework. Note that, distribution of associated noise signal should be known when using

Bayesian inference approach, while in minimum variance estimation method, knowledge of

just first two moments of noise signal is enough.

One should notice that obtained posterior statistics from either Bayesian Inference or the

minimum variance method can be combined with polynomial surrogate model to approximate

posterior distribution of estimated parameters, as described in Section 3.4.

In the end, we once again emphasize that performance of applied parameter estimation

method crucially depends on locations of applied sensors, as we showed in our second nu-

merical example. Hence, it is necessary to develop a general framework to optimally locate

observation sensors over spatial domain to improve performance of the estimation process. In

Chapter 5, we will develop a general optimal sensor placement strategy to perform this task.

But before that, let us demonstrate performance of proposed uncertainty quantification and

estimation methodology for a real world problem. In the next chapter, we show efficiency

of developed mathematical tools by applying these methods to the problem of uncertainty

quantification and source parameter estimation of Eyjafjallajökull eruption which happened

in April 2010 in Iceland.
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Chapter 4

Application to Volcanic Ash Plume

Dispersion

4.1 Introduction

Ash clouds are produced by the explosive eruptions of volcanoes. These clouds, propagating

downwind from a volcano eruption column, are a hazard to aircraft, causing damage to the

engines [81]. On December 15, 1989, KLM Flight 867 lost all its engines when the airplane

entered a plume of ash originating at the Redoubt Volcano in the Aleutian Islands [82]. That

incident caused more than $80 million (US) in damage to the aircraft, but fortunately no lives

were lost. The recent eruption of the EyjafjallajökullVolcano in Iceland wreaked havoc on

European aviation after the eruption started on April 14, 2010. Decisions about the closure

of European air-space, largely based on deterministic ash plume models, resulted in more

than $4 billion in economic losses and left more than 10 million stranded passengers [83]. In

addition to the large financial consequences of volcanic eruptions, there are significant health

and environmental consequences of ash propagation and its subsequent fallout, ranging from

inhalation of the ash particles to crop damage from tephra fallout. Clearly, those charged

with volcanic risk management need accurate information for decision making. Among other

components, this information flow should include a map of the probability of ash being

present at a given location at a specified time.

Other hazardous events present similar needs. For example, the accidental release of

radioactive gaseous material, such as occurred at the Chernobyl nuclear reactor explosion,
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or the oil spill resulting from the Deepwater Horizon accident in Gulf of Mexico, also demand

tools and approaches, to accurately forecast the advection and dispersion of a material.

In this chapter, we illustrate performance of the proposed methodology in the previous

two chapters for uncertainty quantification and source parameter estimation of Eyjafjal-

lajökull eruption which occurred in April 2010 in Iceland. In the following, we first review

concurrent approaches for uncertainty quantification and source parameter estimation of

volcanic eruption incidents and briefly describe our methodology. Then, applied numeri-

cal model of eruption column and volcanic ash transport and dispersion (VATD) model are

explained in section 4.2. Our simulation results for uncertainty quantification and source pa-

rameter estimation are then illustrated in Section 4.3 and Section 4.4, respectively. Finally,

a discussion of results is presented in Section 4.5.

Current Approaches and Limitations

Often times volcanologists extrapolate information from past eruptions to create maps fore-

casting future events and areas at risk. Basing forecasts solely on past recorded events does

not always provide a reliable estimate of likely eruption scenarios – prior events may have

gone unreported, and site-specific conditions may have changed. Computer simulations using

physics-based model equations, calibrated using field data, provide additional information on

which to base hazard forecasts. To predict ash cloud movement, model systems may incor-

porate stochastic variability, such as uncertainty in source parameters or randomly varying

wind fields, to better capture possible ash particle transport. A major source of uncertainty

impacting the location of a volcanic ash cloud are the characteristics of the volcanic eruption

column, including the distribution of grain size in the column and the column rise height [84].

Several investigations have tried to quantify the effect of source parameter uncertainty on

the position of ash clouds. For example, during the Eyjafjallajökull eruption, the London

Volcanic Ash Advisory Centers (VAAC) used the NAME computational model [85] for ash

advection/dispersion to make forecasts of the position of the ash cloud, which in turn were

used to issue advisories to the airline industry. In related work, Denevish et al. [86] applied

NAME, with a specified set of input source parameters estimated from measurement data,

to study the arrival of the Eyjafjallajökullash cloud over the United Kingdom. Through a

sensitivity analysis, this study demonstrated that the position and concentration of ash over

a given region of interest were particularly dependent on eruption source parameters such as
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the column height and the particle profile within the column. O’Dowd et al. [87] simulated

the dispersion of ash from Eyjafjallajökull using the REMOTE computational model, for a

specified set of source parameters. In another study, Webley et al. [88] used the WRF-Chem

dispersion and tracking model to forecast the ash cloud position, given the column height,

particle grain-size distribution and mass eruption rate. Heinold et al. [89] simulated the Ey-

jafjallajökull emission, transport, and particle deposition over Europe by using the regional

chemistry-transport model COSMO-MUSCAT, given the height of ash particles and their

size distribution. Dispersion of the ash cloud from the Eyjafjallajökull eruption has also

been simulated by using the FALL3D computational model [90], where the input parameters

are approximated from the observed height of the eruption column and from the total grain

size distribution as reconstructed from field observations. These investigations each apply

different computational models to forecast ash cloud position as a function of time, each with

its successes and limitations. In each instance, however, a specified set of the eruption source

parameters, perhaps obtained retrospectively from radar or satellite data, is used to forecast

ash cloud motion. Because there is great uncertainty in the model inputs, deterministic

physics based models alone are limited in their ability to make meaningful forecasts.

In order to make accurate long-term forecasts, it is necessary to understand how the

uncertainty in source parameters and the variability of wind fields propagate through the

numerical advection/dispersion codes. Although a detailed sensitivity analysis can relate

the variations in source parameters and wind data to ash cloud motion, uncertainty analysis

provides a richer suite of tools, allowing an assessment of one’s confidence in making forecasts

based on all available information. Of course a successful application of uncertainty analysis

must overcome the challenges posed by the large number of uncertain input parameters

and the associated cost of computation. Data input and output drive the calculations of

uncertainty quantification, and present additional difficulties for any analysis. Importantly,

in real-time hazard assessment one is constrained by the need for rapid analysis. Each of

these factors affects the trade-off between completeness and speed. In addition, propagating

uncertain model inputs leads to forecasts with uncertainties that grow in time and which

must be tamed in order to make useful forecasts; assimilating available observational data

to refine the model forecast reduces these uncertainties.

Surprisingly, limited research has been done on fusing model forecasts with available

measurement data to accurately forecast ash cloud motion. The exceptions are the recent
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works of Stohl et al. , Denlinger et al. and Kristiansen et al. [91–93], who use inversion

methods to couple a-priori source information and the output of dispersion models together

with satellite data, to estimate volcanic source parameters. As a consequence, simulations

performed by using these posterior source estimates result in better correspondence with

satellite data. The major drawback of this approach is that the inversion method results in

a deterministic point estimate for the posterior values of source parameters, and completely

neglects prior information and inaccuracies in measurement data. An alternative to simply

fitting the measurement data is to exploit sensor noise characteristics. A simple probabilistic

approach is to apply a Maximum Likelihood Estimate (MLE) [70] to estimate the parameter

values. However, the MLE also provides only point estimates and does not provide any

information about one’s confidence in those estimates.

A Bayesian method such as the Maximum a posteriori (MAP) estimation [94] combines

a prior distribution together with information contained in measurements, to provide op-

timal estimates for source parameters. Like the MLE method, significant computational

effort is required to solve the optimization problem resulting from the MAP approach, to

determine optimal source parameters. This computational burden restricts the application

of the method in large scale dynamical systems.

Our Approach

Figure 4.1 outlines our basic approach. Past knowledge of similar eruption and eruption

source observation are used to create an initial probability distribution of the model pa-

rameters, for a recently developed model that couples a volcanic eruption column (the bent

model) with a volcanic ash transport and dispersion (VATD) model (puff) [95]. These

distributions are then used to generate an ensemble of simulation runs, guided by Conju-

gate Unscented Transform quadrature scheme [46, 47, 49]. The ensemble outcomes are then

integrated to generate a probabilistic map of the ash distribution in space and time by con-

structing a polynomial chaos surrogate model of the VATD model. As satellite imagery

becomes available, this data is used to find a posterior estimate of the volcano source pa-

rameters, using a minimum variance estimator as part of the solution of an inverse problem.

Furthermore, the satellite data is also used to improve the model parameter distribution by

updating the polynomial chaos surrogate model. These refined source parameters estimates

can then be used in subsequent propagation and forecast.
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In the end, one should note that even though we have employed the bent and puff

models, any other column and VATD model could be used, and the statistical calculations

appropriately adapted. Indeed, the framework introduced here provides an approach for de-

veloping maps for many hazard scenarios, assuming the cost of simulations is not prohibitive.
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Figure 4.1: Schematic view of probabilistic model forecast and source parameter estimation

process while incorporating prior knowledge of source uncertainty and satellite imagery.

4.2 Bent-PUFF Numerical Model

Ash transport models can be divided into two broad categories: those intended to calculate

eruption column and tephra fall deposit characteristics based on source vent conditions,

as in [96] (eruption column model), and those intended to forecast long-range atmospheric

transport, dispersion and fallout, as in [97] (VATD model). All ash transport models rely

on the existence of an explicit relationship between the eruption column and atmospheric

dynamics, and the resulting transport, dispersion and settling of the ash. The focus of this

work is on the long-range movement of ash clouds, and not eruption column dynamics or

tephra deposition. Therefore, a simple VATD model, but one that nonetheless contains
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several sources of uncertainty, is considered to focus attention on long-range transport and

dispersion. Tanaka [98] and Searcy et al. [99] developed puff, an ash tracking model for

forecasting the paths of incipient volcanic clouds. puff simplifies the eruption plume to a

vertical source, and uses a Lagrangian pseudo-particle representation of the ash plume in

a detailed 3-D regional windfield to determine the trajectory of the cloud. puff and other

dispersion models have proven extremely useful in modeling the distal transport of ash for

aviation safety [99]. During an eruption crisis, puff forecasts have been used to forecast ash

cloud movement critical to the assessment of potential impacts – for example, on aircraft

flight paths. puff has been validated against historic volcanic eruptions such as the 1992

Crater Peak vent eruption at Mount Spurr and the 2006 eruption at Mount Augustine with

reasonable success [99, 100]. To start a simulation, puff requires as inputs the eruption

start time and duration, the initial plume height, the vertical distribution of particles of

varying size, a representative wind field, and the simulation end time. At first, some of these

parameters must be assumed, based on past activity of the volcano, or by using the Eruption

Source Parameters (ESP) of Mastin et al. [101].

To initialize a puff simulation a collection of particles of different sizes must be specified

as a function of altitude, a process that is not well constrained; see [102,103]. It is important

to remember that puff particles are not simple surrogates for ash concentration, but are

representatives of ejecta of a given size at a specified height. As such this number is a user-

selected input that affects both simulation time and resolution of the output. In addition

to particle grain-size distribution and windfield, other puff input parameters include the

coefficient of turbulent diffusion, and particle settling speed, both of which are estimated.

Instead of guessing the initial particle distribution as a function of height, a volcanic eruption

plume model called bent is employed to provide initial conditions for the VATD model. The

essential features of this coupling between bent and puff is described in [95]. bent solves

the equations for mass, momentum and energy balance, averaged over a cross-sectional slice

of the eruption column [104]. bent assumes a grain-size distribution of pyroclasts and,

depending on the volcanic vent size and the speed of the ejecta, the model equations forecast

the height distribution of the various sized clasts. bent has been tested against plume rise

height data and ash dispersal data [103]. In particular, the discussion in that paper (among

many others) corroborates that the scaling relationships derived in [105] between energy and

plume rise height are valid for energetic volcanic plumes piercing the tropopause.
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In a tool we call bent-puff, bent incorporates important physics of the volcano column

and provides initial conditions for puff. On the one hand, physics guides the model coupling

and determines how outputs from bent feed into puff. On the other hand, this coupling can

be viewed as simply substituting one set of uncertain parameters in puff (vent size, velocity,

clast size distribution) for an uncertain function of bent (particle height distribution). In

any event, physically relevant inputs from the volcano source – together with their variability

– are modeled and propagated through bent and puff.

4.3 Uncertainty Quantification

The performance of the proposed methodology for generating accurate hazard maps and

for updating model parameter estimates, is assessed using data from the April 2010 Eyjaf-

jallajökull eruption in Iceland. For simulation of ash transport, the bent volcanic column

model is first used to generate initial ash cloud data, and then puff VATD model [106] is

utilized to simulate transport of the ash over spatial domain during the time period 14− 16

April 2010. bent numerical model produces mass loading, plume height, and grain size dis-

tribution, which are used in puff, given atmospheric winds and volcanic source conditions.

Icelandic Meteorological Office (IMO) Keflavik radiosonde data from 14 April 00Z, where

00Z refers to midnight in Universal Time, was used to generate the atmospheric winds for

bent. Numerical model puff, together with the given windfield, tracks the propagation

of ash from Iceland to Europe. puff can be run using one of several Numerical Weather

Prediction (NWP) windfields [107–110]. These NWP models are available at different levels

of spatial and temporal resolution. For this simulation, puff uses global NCEP/NCAR

Reanalysis windfields to propagate ash, using 6-hr, 2.5◦ data. These wind fields assimilate

observation wind data into model runs. Output from a deterministic puff model run con-

sists simply of the position of the representative numerical particles; one can smooth this

positions to determine a smoothed concentration field. The outputs are post-processed to

extract other quantities of interest, such as maximum height of ash at a given geographical

location. The top-height of ash is a useful quantity for the purpose of air traffic routing.

All four volcano source parameters – vent radius b0, vent velocity w0, mean grain size

Mdφ, and standard deviation of grain size σφ – are assumed to be uncertain, and the prior

density functions for these parameters, based upon previous eruption studies, are listed in
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Table 4.1: Eruption source parameters based on observations of Eyjafjallajökull volcano

and information from other similar eruptions of the past.

Parameter Value range PDF Comment

Vent radius, b0, (m) 65-150 Uniform, non-

negative

Measured from IMO radar image

of summit vents on 14 April 2010

Vent velocity, w0, (m/s) 45-124 Uniform, non-

negative

Measured by infrasound [111] 6-

21 May, when MER similar to 14-

18 April

Mean grain size, Mdϕ, ϕ 3.5-7 Uniform, ∈ R [112], Table 1, vulcanian and

phreatoplinian. A. Hoskulds-

son, Eyjafjallajökull Eruption

Workshop, 09/2010, presenta-

tion, ’Vulcanian with unusual

production of fine ash’.

σϕ, ϕ 0.5− 3 Uniform, ∈ R [112], Table 1, vulcanian and

phreatoplinian

Eruption temperature 1200 C Fixed [95]

Erupted water mass frac-

tion

0.017 Fixed [95]

Eruption duration 3 hr Fixed [95]

Table 4.1. The CUT quadrature scheme described in Section 2.2 was used to produce ini-

tial ensembles of source parameters. In earlier work [95], it was shown that an 8th order

quadrature scheme is sufficient for computing statistics of ash top-height. Hence, 161 CUT8

quadrature points were generated. Following runs of bent corresponding to CUT8 quadra-

ture points, each bent output was then propagated through puff, which was then run for

three days. The outputs from puff were then used to create a polynomial surrogate model

of degree 4 for ash top-height. 5× 104 secondary sample points of ξ ∈ R4 were then used to

compute the probabilistic hazard map described in Section 2.3.

Meteosat-9 retrievals of ash-cloud height were used to validate the probabilistic haz-

ard map methodology and to refine prior probability density functions. Volcanic ash was

identified in the satellite data using the methodology described in [113] and [114]. The ash

loading (mass per unit area) and ash cloud height were retrieved using an optimal estimation

approach [115,116].
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Table 4.2: Location 52N, 13.5E: conc is the puff computed absolute air concentration (in

mg/m3) in a grid cell of size 0.5◦× 0.5◦× 2km at 1200hours on 16th April, 2010 , and count

is the number of puff particles in that cell
Number of ash particles height (m) conc. count height conc. count height conc. count

105 3000 7.4 × 10−5 28 5000 4.23 × 10−5 16 7000 - -

5 × 105 3000 1.17 × 10−4 221 5000 3.54 × 10−5 67 7000 - -

106 3000 1.12 × 10−4 405 5000 4.12 × 10−5 156 7000 - -

2 × 106 3000 1.12 × 10−4 884 5000 4.03 × 10−5 305 7000 - -

4 × 106 3000 1.09 × 10−4 1655 5000 4.10 × 10−5 3620 7000 1.32 × 10−7 2

8 × 106 3000 1.15 × 10−4 3471 5000 4.15 × 10−5 1256 7000 1.98 × 10−7 6

107 3000 1.10 × 10−4 4151 5000 3.99 × 10−5 1510 7000 2.91 × 10−7 11

Computing Probability of Ash top-height

Like any Lagrangian model, the accuracy of the bent-puff model is greatly influenced by the

number of ash particles used in simulation. To understand the convergence of the approach

proposed here, it is necessary to understand how the number of ash particles impact the

output of puff. For this purpose, probabilistic hazard maps were computed corresponding

to five different values of the number of ash particles: 4×106, 107, 2×107, 4×107, and 8×107.

For all puff runs, the vertical position of ash particles is quantized in 2-km altitude levels.

Table 4.2 represents the absolute and relative ash concentration at a particular location,

for different altitudes and different number of ash particles used in one deterministic run of

bent-puff. As expected, both the concentration and the ash top-height are significantly

affected by the number of ash particles. The table shows that, by increasing the number of

ash particles from 2 × 106 to 4 × 106, the maximum height of ash at location 52N, 13.5E

increases from 5000 m to 7000 m.

Figure Fig. 4.2 shows the processor time and estimates of memory required to complete a

single run of the bent-puff model, as a function of the number of particles. From this plot,

it is clear that the computational time increases exponentially with an increase in number of

ash particles in a run. Here again the trade-off between desired accuracy and computational

cost is evident. These results are consistent with prior studies performed on the convergence

of puff output [117].

Fig. 4.3 shows the probability of ash top-height being greater than or equal to specified

threshold hthresh for a few specific locations and times, as a function of the number of ash

particles. It appears that the probability values have converged for lower value of hthresh, but

considerable fluctuations for hthresh = 5000 m and hthresh = 7000 m remain. This observation
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Figure 4.2: Processor Time for Single Deterministic Run of bent-puff vs. Number of Ash

Particles.

is consistent with the convergence of bent-puff model shown in Table 4.2. One surmises

that these fluctuations can be attributed to the accuracy of the puff model rather than any

aliasing error in the convergence of quadrature scheme.
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(b) hthresh = 3000 m
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Figure 4.3: Probability of ash top-height ≥ hthresh at different spatial locations on April

16th, 0600 hrs

Fig. 4.4 shows the probabilistic hazard map consisting of probability of ash top-height
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being greater than or equal to hthresh = 3 km for different numbers of ash particles in

bent-puff model, overlaid with satellite observed ash top-height greater than or equal to

3 km, on April 16th, 0600 hrs (54 hours after eruption). Fig. 4.5 shows the probability of

ash top-height to be greater than or equal to hthresh = 5 km, overlaid with satellite observed

ash top-height greater than or equal to 5 km, again on April 16th, 0600 hrs. From these

plots, one can conclude that the probabilistic hazard map calculations have converged with

respect to number of ash particles used and satellite imagery consistently fall within most

probable forecasted region.

(a) 107 ash particles (Change with respect to

80 million ash particles = 1.36%)

(b) 2×107 ash particles (Change with respect

to 80 million ash particles = 1.13%)

(c) 4×107 ash particles (Change with respect

to 80 million ash particles = 0.96%)

(d) 8× 107 ash particles

Figure 4.4: Probability of ash top-height ≥ 3 km versus satellite observed ash top-height

≥ 3 km on April 16th, 1200 hrs (60 hours after eruption).

Fig. 4.6 shows the probability map of ash top-height exceeding 1 km overlaid with satellite

observed ash top-height at six-hour interval for 16th April. Most of the satellite data lies

within the high probability region, although the probable ash cloud footprint is quite large,

owing to the large uncertainty in prior source parameters. Note also the predicted ash in the

north-east corner of the image is not supported by satellite imagery; further study indicates

this area was obscured by meteorological clouds.

To compare the accuracy of the CUT quadrature scheme, the 8th order Clenshaw-Curtis
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(a) 107 ash particles (Change with respect to

80 million ash particles = 1.25%)

(b) 2×107 ash particles (Change with respect

to 80 million ash particles = 1.10%)

(c) 4×107 ash particles (Change with respect

to 80 million ash particles = 0.97%)

(d) 8× 107 ash particles

Figure 4.5: Probability of ash top-height ≥ 5 km versus satellite observed ash top-height

≥ 5 km on April 16th, 1200 hrs (60 hours after eruption).

(CC) quadrature scheme with 94 quadrature points is employed to compute probabilistic

hazard maps. The convergence of the Clenshaw-Curtis quadrature scheme in computing the

mean and standard deviation of the ash top-height has been studied in earlier work [95].

Fig. 4.7 shows the probability map of ash top-height exceeding 1 km overlaid with satellite

observed ash top-height at six-hour intervals for 16th April. From Fig. 4.6 and Fig. 4.7, it is

clear that probability maps computed with the help of CUT and CC quadrature schemes are

indistinguishable. We conclude that the CUT methodology provides an order of magnitude

computation savings without the loss of any accuracy.

Finally, Fig. 4.8 and Fig. 4.9 illustrate mean and standard deviation of ash top-height,

obtained by CUT8 and Clenshaw-Curtis quadrature points, respectively. One can see from

comparison of these figures that both quadrature schemes result in similar statistics for ash

top-height, while CUT quadrature scheme uses significantly less computational resources

due to lower number of quadrature points.
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(a) April 16th, 0000 hrs (b) April 16th, 0600 hrs

(c) April 16th, 1200 hrs (d) April 16th, 1800 hrs

Figure 4.6: Probability Maps for Ash Top-Height ≥ 1 km and corresponding satellite ob-

served ash top-height.
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(a) April 16th, 0000 hrs (b) April 16th, 0600 hrs

(c) April 16th, 1200 hrs (d) April 16th, 1800 hrs

Figure 4.7: Probability Maps (obtained through Clenshaw-Curtis quadrature Scheme) for

Ash Top-Height ≥ 1 km and corresponding satellite observed ash top-height.
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(a) Mean Ash Top-Height (b) Standard Deviation of Ash Top-Height

Figure 4.8: Mean and Standard deviation of Ash Top-Height on April 16th, 1200 hrs., ob-

tained by CUT quadrature points

(a) Mean Ash Top-Height (b) Standard Deviation of Ash Top-Height

Figure 4.9: Mean and Standard deviation of Ash Top-Height on April 16th, 1200 hrs., ob-

tained by Clenshaw-Curtis quadrature points

4.4 Source Parameter Estimation

As just shown, due to the large uncertainty in source parameters, the uncertainty in the

probable ash footprint is very high (see Fig. 4.6). This finding suggests we should re-compute

the source parameter distributions making use of satellite observations. The procedure listed

in Section 3.2 is used to compute posterior estimate for the source parameters and the

corresponding probability density function, using satellite data from three different times
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Figure 4.10: Posterior Mean Estimates for Source Parameters versus number of applied

satellite data.

(April 16th at 0600 hrs, 1200 hrs, and 1800 hrs). Satellite observed ash top-heights are

estimated to be accurate to within 100 m intervals around the observed height, so the sensor

noise νk is taken to be a zero-mean uniform density function over the interval [−100 100] m.

Due to height quantization in the bent-puff model, ash top-height provided by bent-puff

model is assumed to be polluted with zero-mean uniformly distributed random noise between

−1000m and +1000m. Thus Qk in Eq. (3.5) is taken to be 3.33×10−1km2 in our simulations.

4 × 107 ash particles were used in the bent-puff model to compute different expectation

integrals involved in the calculation of posterior source parameter distributions. To reduce

the potential source of numerical error, PETSc [118] with two level domain decomposition

based algebraic preconditioning (block Jacobi or Additive Schwarz) is used to compute the

inverse involved in the computation of Kk in Eq. (3.5).
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Figure 4.11: Prior and posterior estimate of source parameters.
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The prior mean and standard deviation of ash top-height are shown in Fig. 4.8. Fig. 4.10

shows the posterior mean of the source parameters computed through Eq. (3.3), versus

the number of satellite images considered in calculations of posterior mean and covariance.

The expected source parameter values converge as more and more observational data are

made available. Fig. 4.11 shows the assumed prior source parameter distributions and the

computed posterior distributions based on satellite imagery for all three time-intervals. As

expected, the uncertainty in source parameters decreases after the assimilation of satellite

imagery. Because vent radius and eruption velocity directly control mass eruption rate,

thermal flux and therefore eruption plume height, the fact that the cloud top height estimated

from satellite data changes these values is intuitive. The effect of the satellite data on the

grain size distribution is less obvious, but nevertheless can be easily understood when one

remembers that the particles are settling, and the settling is a function of grain size. The

large increase in the standard deviation of the grain size distribution would furthermore

seem to be a reflection that the posterior estimate requires a greater number of fine-grained

particles that settle only slowly.

Finally, the quality of the source parameter estimates is assessed by performing a single

deterministic run of bent-puff corresponding to the estimated posterior mean of source

parameters and comparing it against satellite observed ash top-height. Fig. 4.12(a) shows

the ash top-height forecast at time 1200 hrs on April 16th using posterior estimates for

source parameters obtained through incorporating satellite observation available at 600 hrs

on April 16th. Similarly, Fig. 4.13(a) shows the ash top-height forecast at time 1800 hrs,

obtained through incorporating satellite observations available at 600 hrs and 1200 hrs.

Fig. 4.12(b) and Fig. 4.13(b) show the satellite observed ash top-height at 600 hrs and

1200 hrs, respectively. These results indicate that the forecast of ash cloud top-height based

on the posterior estimate of source parameters match very well with the observed satellite

data. The observed and computed ash top-height differ from each other with an accuracy of

±2 km, which corresponds to the numerical accuracy of bent-puff model.
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(a) bent-puff forecast (b) Satellite Observation

Figure 4.12: Comparison of Forecast of Ash top-height and Satellite Observation on April

16th, 1200 hrs.

(a) bent-puff forecast (b) Satellite Observation

Figure 4.13: Comparison of Forecast of Ash top-height and Satellite Observation on April

16th, 1800 hrs.

Validation of Posterior Estimate of Source Parameters

The prior values for the source parameters used in this study were estimated based on the

limited data that was available immediately following the eruption, and provided only a

rough guide to true values, but nevertheless reflect the type of data that may be available

at the time of eruption. Since the eruption, further studies have been completed and better

estimates of the source parameters have become available. We compare these independent

estimates of source parameters with the posterior mean estimates obtained here and reported
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in Table 4.3.

The vent radius was estimated from an airborne IMO radar image of the Earth’s surface

in the summit region taken on 14 April 2010 at 1030 UTC during the paroxysmal phase of

the eruption, based on our own image analysis. Radar imagery is useful for this because of

the ability of radio waves to penetrate eruption clouds. We originally assumed three of the

darkest areas on the image to be craters. Later image guidance provided by the Icelandic

Institute of Earth Sciences (http://earthice.hi.is/eruption eyjafjallajokull 2010),

however, suggests the presence of five roughly elliptical craters at that time, ranging in

equivalent circular radius from 21 to 119 m (Table 4.3). Assuming that pressure balance in

the plume as it exited the crater(s) developed rapidly based on the lack of atmospheric shocks

in videography, and that crater diameter reflects pressure balance, the posterior estimate of

87 m eruption radius suggests that one of the two larger craters was active during the

paroxysmal phase of the eruption on the morning of 14 April. This result is consistent with

observations from other eruptions that vent activity migrates with time, and that the active

vent during the most vigorous phase of an eruption should be that which allows the greatest

flux. Measures of the initial velocity are now available for the initial, vigorous 14–18 April

phase of the eruption based on a video of the erupting plume that was analyzed using a vortex

tracking algorithm. The velocity near the vent was found to correlate with the relative vigor

of the discharge from the volcano and plume height, and estimated to be 20–30 m/s on 17

April [119]. Given that this measurement was made slightly above the vent on the outer

margin of the plume, in a rapidly decelerating section of the plume, it is probable that this

observed velocity is slightly lower than the true exit velocity. The observed velocity of 20–30

m/s slightly above the vent thus is in accord with the mean value for the posterior mean exit

velocity of 54m/s, which is on the lower end of the prior range. The grain size distribution

was studied mainly for the second intensive phase of the eruption (early May), during which

time activity was similar to that seen in the early phase from 14–18 April. From these

observations, it was found that the mean grain size, Mdϕ, changed from −0.9 to 4.5ϕ and

the standard deviation, σϕ, from 0.7 to 2.6 ϕ with distance from the vent for deposits from

the cloud found on land [120]. In fact, at a distance of 44km from the vent and for the

next 12km, the observations shown a quasi-constant mean size of 4.5ϕ and a σϕ of 2.6. This

distance is within one computational cell from the source, and therefore grain sizes measured

there should represent initial conditions. Furthermore, once the size of grains falling to the
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ground becomes constant, it can be assumed that the depositing grain size reflects the grain

size of particles left in the cloud. If these assumptions are valid, the posterior estimate of

the initial grain size distribution of 4.96± 2.62ϕ correlates well with the measured value of

4.5± 2.6ϕ.

Table 4.3: Comparison of prior, posterior and new estimates of eruption source parameters

based on observations of Eyjafjallajökull eruption and simulations.

Parameter Prior range Posterior

mean

New Reference

Vent radius, b0 (m) 65-150 87 21, 65, 119, 31, 32 Remeasured based on

better image guidance

Vent velocity, w0 (m/s) 45-124 54 > 20− 30 [119]

Mean grain size, Mdϕ (ϕ) 3.5-7 4.96 4.5 [120]

σϕ, ϕ 0.5− 3 2.62 2.6 [120]

Note that the grain size unit of geology, ϕ, is defined as: ϕ = − log2(D/D0), where diameter, D, is

measured in mm, and reference diameter D0 = 1 mm.

4.5 Summary

In this chapter, application of developed methodology in previous two chapters to probabilis-

tic forecasting and source parameter estimation of volcanic ash transport is outlined. The

method of quadrature points (using recently developed CUT points) is used to propagate

parameter uncertainty through the bent-puff model. The quadrature ensembles are then

used to construct a polynomial chaos surrogate model which is then sampled to provide

probabilistic hazard map for ash top-height. Furthermore, the method of quadrature points

in conjunction with the minimum variance unbiased linear estimation approach is used to

fuse bent-puff model forecasts and satellite observational data, to find a posterior estimate

of source parameters and to update coefficients of polynomial chaos surrogate model. The

updated polynomial chaos surrogate model is used to obtain posterior distribution of source

parameters. This methodology is implemented and validated using the 2010 Eyjafjallajökull

volcanic eruption as a benchmark problem. Numerical simulations illustrate the compu-

tational efficiency of using the CUT method. The source parameter estimation method

proposed here provides not only mean estimates, but also a statistical confidence bound for
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that mean. Validation of the simulation results shows that the posterior estimate of source

parameters corresponds well with values obtained in other references. Hazard maps based

on our approach accurately forecast the location of ash, when tested against satellite data.

In this work, we have used the NOAA NCEP Reanalysis 1 wind field to compute the

hazard map. The Reanalysis windfield uses observation data to produce a “best” known

realization of the wind field consistent with data. Uncertainty introduced into the wind

forecast from the NWP model is significant, and incorporating this uncertainty into an

enhanced model ensemble is the subject of ongoing work.

Finally, it is important to note that the overall framework for probabilistic model forecast

and source estimation described here is not dependent on the choice of VATD or eruption

model; other models can easily be used to generate column and plume outputs that are used

in the subsequent uncertainty analysis.
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Chapter 5

Optimal Information Collection

5.1 Introduction

There is no doubt that proper sensor placement is intimately tied to the source estimation and

model uncertainty characterization. Poor data measurements caused by sparse or scattered

sensors over the domain of interest results in a poor estimate of source location. Hence,

finding optimal locations of the sensors is very important for accurate source parameter

estimation. Due to the dynamics of plume dispersion phenomenon, it is much more efficient

to apply mobile sensors, instead of static sensors for data monitoring purposes. Different

strategies have been suggested to determine the optimal path of mobile sensors for source

parameter characterization of the plume dispersion phenomenon. These methods can be

categorized as Chemotaxis, Anemotaxis, and Fluxotaxis.

In chemotaxis approach [13,14], mobile sensors follow the concentration gradient. There-

fore, the direction of the largest concentration is the goal direction for the chemotaxis.

Generally, this direction is estimated by seeking out a neighbor with the largest detected

chemical concentration and computing the bearing toward this neighbor. The major prob-

lem with chemotaxis approach is that the mobile sensors always try to move in a direction of

positive concentration gradient and hence, easily susceptible to be trapped in a local maxima

and plateaus of the concentration.

In anemotaxis strategy [15,16], mobile sensors always move upstream while being inside

the plume. Hence, the upstream (upwind) is the goal direction for mobile sensors. The

utilization of wind direction as the main control parameter of the mobile sensor’s direction
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restricts the applicability of this approach to an environment where the terrain map is

relatively simple and the wind direction is stable. Also, the lack of communication among

different neighbors in this approach restricts each mobile sensor to only local information

about the environment, and the team can easily be trapped in local concentration maxima

and plateaus.

In the fluxotaxis approach [17], the mobile sensors compute the amount of dispersal ma-

terial flux passing through virtual surfaces formed by neighboring sensors. Each individual

sensor independently calculates the amount of local material flux, relative to the current po-

sition of its neighbors. The major advantage of this approach is that it combines information

about both fluid velocity and material density to find the true source location. However,

the lack of collaboration between mobile sensors is the primary drawback of this approach.

Each mobile sensor can only make decisions based on the local information it sensed from

its surrounding environment.

The major deficiency of aforementioned approaches lies in their restriction to continu-

ous releases phenomena. In other words, none of chemotaxis, anemotaxis, and fluxotaxis

methods are applicable in presence of spontaneous releases. This is due to the presence of

discontinuities in plume flow which hinders evaluation of concentration gradient or flux of

plume during the time. Furthermore, they do not take into account the information available

through the numerical model forecasts.

Besides aforementioned methods, recently multiple researches have been done on the field

of optimal sensor placement, based on information theory. Choi et al. [121] studied continu-

ous motion planning of mobile sensors for informative forecasting in presence of linear time

varying systems and Gaussian uncertainty. Bourgault et al. [122] suggested a robotic explo-

ration approach based on maximizing mutual information, while linearizing the dynamics

and sensor model and assuming Gaussian uncertainty involved in the process.

Optimal sensor placement is also widely used in target tracking problem [10, 11, 123].

For instance, in [123], optimal sensor placement and motion coordination of mobile sensor

networks are used to tackle target tracking problem. This is achieved by maximizing the

Fisher Information matrix, or equivalently minimizing the associated Cramer-Rao lower

bound of parameter estimates. Tharmarasa et al. [10] studied the problem of selecting a

small subset of the available sensors in a large network of sensors in order to track multiple

targets. A search scheme based on combination of optimization methods and the Cramer-Rao
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lower bound was used to perform this task. The major drawback of these works is that the

Fisher Information matrix usually consists of parameters which are to be estimated. Hence,

an estimate of unknown parameters is used during maximization of the Fisher Information

matrix. Williams et al. [9] studied the problem of choosing optimal subset of sensors from

a stationary sensor network, in presence of linear model dynamics and linear sensor model,

while minimizing the communication cost. Approximate Dynamic Programming techniques

were used to achieve this goal. The major drawback of this work is that it doesn’t consider

any model to represent sensor dynamics. Hence, a large stationary sensor network is needed

(while a small portion of them is used at each time) to assure the performance of the

proposed approach. As well, linearity assumptions in dynamic model and sensor model

restrict applicability of this method. In a research by Julian et al. [11], an information

theoretic framework was presented for distributed control of a set of mobile robots. The

basic idea of this work is to move mobile robots along gradient of mutual information to

maximize information collection. The major drawback of this approach is that it may not be

effective in the case that initial positions of robots are far way from regions of interest (local

optimality). Also, importance sampling techniques were used to calculate gradient of mutual

information, which could result in computational delay. Hoffmann et al. [12] presented a

control approach for mobile sensor networks, based on maximizing mutual information. In

detail, he used a particle filter framework and Monte Carlo integration method for evaluation

of mutual information. Also, an iterative approach was used at each time step to find optimal

control signal for each mobile sensor. However, the use of Monte Carlo integration to evaluate

mutual information can reduce its computational performance. Another drawback of this

approach is that control policy at each time should be solved iteratively, which could result

in computational cost.

The key idea of this chapter is to optimally locate data monitoring sensors over the

spatial domain of interest such that the uncertainty involved in source parameter estimates

is minimized. This has been achieved by maximizing the mutual information between the

model output and data measurements. A dynamic programming based approach is used to

maximize the mutual information between uncertain parameters and observational data. As

it will be shown, proposed approach expedites the convergence of estimation process and

avoids possible local optimalities while finding mobile sensor locations by maximizing the

mutual information, rather moving along its gradient. In other words, proposed approach
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moves the mobile sensors toward the plume, even though the sensors are initially located far

from the plume area. Along proposed approach for optimal sensor placement, a combination

of generalized Polynomial Chaos (gPC) and Bayesian inference is used for data assimilation

process which allows us to apply our method in presence of nonlinear dynamics and sensor

model and non-Gaussian uncertainties, without using any Monte Carlo sampling. As well,

a set of recently developed quadrature points, named as Conjugate Unscented Transform

points [44, 46, 47, 49], are used to alleviate the computational complexities associated with

evaluation of mutual information, uncertainty propagation, and estimation process. Fig. 5.1

represents schematic view of optimal information collection in estimation process and its

connection with other components.
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Figure 5.1: Schematic view of Optimal Information Collection estimation process and its

connection with other components
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5.2 Dynamic Data Monitoring (DDM)

One of the main challenges in data monitoring of large scale dynamical systems, like plume

dispersion phenomenon, is to effectively observe the system state at each measurement time

step such that it improves accuracy of estimation. This can be done by optimally allocating

a set of mobile sensors (Unmanned Aerial Vehicles) such that measurements with more

information content are sought at each time step. Optimal location of each mobile sensor

at each time step can be achieved by maximizing the mutual information between model

predictions and observed data. To explain this procedure in more detail, assume a set of

Unmanned Aerial Vehicles (UAV) which are used for data observation. Each of the UAVs is

equipped with a chemical sensor to measure the concentration of pollutant material and the

dynamic model of each of the UAVs is given as:

svk+1 = F (svk, u
v
k), v = 1, 2, · · · , Nu (5.1)

where Nu is total number of UAVs and k denotes kth time step. Also, initial condition of vth

UAV is assumed to be given as sv0. The state of UAV, svk, consists of (x, y, z) components

of position and heading angle. Our objective is to find a sequence of control inputs U1:Nu =

{u1:Nu
0 , uNu1 , · · · , u1:Nu

Nt−1} such that it maximizes the mutual information between the sequence

of expected observational data and the source parameters Θ over the time t ∈ [t1, tNt ]. Note

that due to independence of measurement data from individual sensors or UAVs, the problem

of maximizing mutual information can be stated as:

min
U1:Nu={u1:Nu0 ,u1:Nu1 ,··· ,u1:NuNt−1}

J(s1:Nu
0 ) =

min
U1:Nu={u1:Nu0 ,u1:Nu1 ,··· ,u1:NuNt−1}

Nt−1∑
k=0

(
Nu∑
v=1

{
−I(Θk; zk|svk) + uvk

TBuvk
})

(5.2)

constrained to svk+1 = F (svk, u
v
k), sv0 v = 1, 2, · · · , Nu

sak 6= sbk, a, b = 1, 2, · · · , Nu, a 6= b
(5.3)

In above equations, zk and Θk are the measurement data and uncertain source parameter

at time step tk, respectively. I(Θk; zk|svk) represents the Mutual Information between the

measurement data and source parameter, given vth UAV position at time tk. B is a constant
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positive definite matrix. Nt is the total number of time steps during the estimation pro-

cess and ∆t is the time interval between every two consecutive measurement updates. s1:Nu
0

represents initial conditions and u1:Nu
k denotes applied control signal at time tk for a set of

Nu UAVs. Note that the first term in Eq. (5.2) maximizes the mutual information between

measurements and source parameters, while the second term corresponds to minimizing the

amount of energy used by each UAV. One should notice that Eq. (5.2) is a function of a

sequence of control signals U1:Nu = {u1:Nu
0 , u1:Nu

1 , · · · , u1:Nu
Nt−1} which are enforced on a set

of Nu UAVs during the time. Also, the cost function J is a function of initial position of

UAVs, i.e. J = J(s1:Nu
0 ). Hence, the above optimization shall be performed for every possible

combination for initial positions of Nu UAVs. As shown in Eq. (5.3), the optimization is con-

strained to the dynamic model for each UAV. Additionally, the second constraint in Eq. (5.3)

is considered to avoid redundant observations at the same time instance. In the following,

we first explain evaluation of mutual information I(Θk; zk|svk) and then mathematical details

for minimization of Eq. (5.2) are presented.

5.2.1 Mutual Information as a measure for sensor performance

According to information theory, the mutual information between source parameter Θ and

measurement z can be written as [124]:

I(Θ; z) =

∫
z

∫
Θ

p(Θ, z) ln

(
p(Θ, z)

p(Θ)p(z)

)
dΘdz (5.4)

Using Bayes’ rule, p(Θ, z) can be written as:

p(Θ, z) = p(z|Θ)p(Θ)

Hence I(Θ; z) will be equal to:

I(Θ; z) =

∫
z

∫
Θ

p(z|Θ)p(Θ)ln

(
p(z|Θ)p(Θ)

p(Θ)p(z)

)
dΘdz =∫

z

∫
Θ

p(z|Θ)p(Θ)ln (p(z|Θ)) dΘdz−
∫

z

p(z)ln (p(z)) dz (5.5)

Mutual Information can be understood as the reduction in uncertainty. Hence, by max-

imizing mutual information one inherently reduces the uncertainty thus leading to a better

measurement and estimate. It is to be noted that the mutual information is evaluated before
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the actual measurement is made. The likelihood pdf p(z|Θ) and the measurement pdf p(z)

that are evaluated from p(Θ) are used to compute the Mutual Information.

5.2.2 Principle of Optimality

Solution of Eq. (5.2) is based on a very simple idea, which is called principle of optimality.

Principle of optimality states that if a policy U∗ = {u∗0, u∗1, · · · , u∗Nt−1} is an optimal policy

for problem Eq. (5.2), then truncated policy {u∗k, u∗k+1, · · · , u∗Nt−1} is optimal for the time

interval [k,Nt − 1].

To describe the intuition behind the principle of optimality, lets consider the problem of

finding shortest distance from point c1 to c9. This has been shown in Fig. 5.2. Assume that

we are looking for the shortest path between the starting point c1 and destination c9, which

is shown by black line in Fig. 5.2. Based on principle of optimality, if we find the optimal

path between starting point and destination, then by starting from any point on the path,

the rest of the path is also optimal. For instance, given the path passing through the points

c1− c2− c5− c9 being the shortest distance between c1 and c9. Then the shortest path from

c2 to c9 is given by c2 − c5 − c9.
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Figure 5.2: Principle of Optimality in the context of finding shortest distance between points

c1 and c9. The optimal path between starting point and destination is also optimal between

any middle point on the path and destination
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5.2.3 Dynamic Programming

The simple, but powerful principle of optimality can be used in backward manner to find

the optimal policy U1:Nu . In detail, to solve Eq. (5.2), one can first find the optimal control

signal at time Nt − 1 and then use it to find the optimal control signal at time step Nt − 1.

This process can be performed backward in time, until we find corresponding optimal control

signals at all time steps.

This technique is called dynamic programming [26] which is used to find the optimal

policy U1:Nu = {u1:Nu
0 , u1:Nu

1 , · · · , u1:Nu
Nt−1} that minimizes Eq. (5.2). According to Dynamic

Programming method, optimal policy U1:Nu is computed by backward optimization in time,

i.e. first finding the optimal control input u1:Nu
Nt−1, and then using u1:Nu

Nt−1 to find optimal con-

trol signal u1:Nu
Nt−2. This procedure will be repeated recursively to find the rest of the control

signals uvks. Generally, the following recursive algorithm [26] can be used to find optimal

policy U v that minimizes Eq. (5.2) for each UAV:

Given an initial position s1:Nu
0 , the optimal cost J∗(s1:Nu

0 ) is equal to J0(s1:Nu
0 ), given by

the last step of the following algorithm, which proceeds backward in time from period Nt−1

to 0:

JNt(s
1:Nu
Nt

) = 0 (5.6)

Jk(s
1:Nu
k ) = min

u1:Nuk ∈U1:Nu
k (sk)

{
gk(s

1:Nu
k , u1:Nu

k ) + Jk+1(s1:Nu
k+1 )

}
, k = Nt − 1, Nt − 2, · · · , 0

(5.7)

constrained to svk+1 = F (svk, u
v
k), sv0 v = 1, 2, · · · , Nu

sak 6= sbk, a, b = 1, 2, · · · , Nu, a 6= b
(5.8)

where,

gk(s
1:Nu
k , u1:Nu

k ) =
Nu∑
v=1

{
−I(Θk; zk|svk) + uvk

TBuvk
}

(5.9)

As mentioned before, this process should be performed for each of the possible values for

initial condition sv0. After finding the optimal policy U v, it can be used to optimally locate
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the corresponding UAVs such that the mutual information between source parameters and

measurement data is maximized.

Implementation of above algorithm using the continuous dynamics of the UAV in Eq. (5.1)

requires excessive computational resources and is not achievable in real time. Hence to

make the problem tractable, the spatial domain has been discretized into a uniform grid.

The mutual information is now only evaluated at these grid nodes and the UAV motion

is restricted to these nodes. This lead to a more tractable sub-optimal solution that is

implementable in real time. Unfortunately, the problem complexity grows exponentially

with the number of UAVs. For instance, even in presence of 2 UAVs and a 100 × 100 × 10

spatial grid points, there will be 1010 possible combinations for positions of UAVs for which

J(s1:2
0 ) needs to be minimized. Hence, an enormous computational effort is required to

perform such minimization. A simpler alternative approach to overcome these deficiencies

in minimizing Eq. (5.2) is to recursively find sub-optimal policies for each one of the UAVs

individually with slight modifications in original cost function. The idea is to first find

optimal position for the first UAV during the time. Then, the sub-optimal policies for all

other UAVs can be found by minimizing the following modified cost function:

min
U={uv0 ,uv1 ,··· ,uvNt−1}

J(sv0) (5.10)

constraint to =

svk+1 = F (svk, u
v
k)

sv0

(5.11)

where,

J(sv0) =
Nt−1∑
k=0

{
−I(Θk, zk|svk) + uvk

TBuvk + α
v−1∑
j=1

e−[svk−sjk]TW [svk−sjk]

}
, v = 2, 3, · · · , Nu

(5.12)

with α > 0 and the positive definite diagonal matrix W being penalty factors that determine

the separation between neighboring UAVs. Hence, the UAVs are made to spread out in the

spatial domain of interest thus avoiding redundancy in measurements .

One should note that the computational cost involved in recursively finding sub-optimal

locations of UAVs is far less than the computational cost involved in solving Eq. (5.7) to

Eq. (5.9). For comparison, consider a case where Nu UAVs are used to perform data obser-

vation over a Ng×Ng×Ng spatial grid points. In this case, the computational cost involved
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in solving Eq. (5.7) to Eq. (5.9) will be proportionate to N3Nu
g , while the computational cost

involved in finding sub-optimal locations of UAVs using Eq. (5.10) to Eq. (5.12) is propor-

tionate to NuN
3
g . Hence, solving Eq. (5.10) results in significantly less computational with

respect to solving Eq. (5.7), especially in presence of larger number of UAVs.

5.2.4 Limited Lookahead Policy

Depending on the nature of phenomenon under study, evaluation of mutual information

map for all the future time steps can be computationally expensive. This will result in

computational complexity while finding optimal control policies for the UAVs during source

parameter estimation process. Hence, using Eq. (5.12) restricts real time applications of

proposed algorithm. One way to avoid these computational complexities is to approximate

the true cost-to-go function Jk+1 in Eq. (5.12) with some function, denoted by J̃k+1, which is a

limited lookahead approximation of true cost-to-go function Jk+1. For instance, in Eq. (5.12),

Jk+1 can be approximated as:

Jk+1(svk, u
v
k) ' J̃k+1(svk, u

v
k) =

k+1+l∑
i=k+1

{
−I(Θi, zi|F (svi−1, u

v
i−1)) + uvi

TBuvi + α
v−1∑
j=1

e−[svi−sji ]
TW [svi−sji ]

}
, v = 2, 3, · · · , Nu

(5.13)

where, l is the number of future time steps which are used for approximation of true cost-

to-go function Jk+1. As one can see, evaluation of Eq. (5.12) requires knowledge of mutual

information for all the time steps between k + 1 and Nt − 1. While in limited lookahead

method, Jk+1 is approximated by a limited number of future time steps. Similarly, Jk+1 in

Eq. (5.7) can be approximated as:

Jk+1(svk, u
v
k) ' J̃k+1(svk, u

v
k) =

k+1+l∑
i=k+1

−I(Θi, zi|F (svi−1, u
v
i−1)) + uvi

TBuvi , v = 1 (5.14)

For plume dispersion applications, making use of limited lookahead policy has two major

benefits with respect to the original dynamic programming algorithm. First, as we men-

tioned before, depending on the problem in hand, limited lookahead policy could result in

considerably less computational cost involved in finding sub-optimal control policies. The

second benefit of limited lookahead policy is that due to dependence of optimal policies on
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future wind data, the optimal policies obtained using the original cost function may be erro-

neous for distant future time steps. Hence, using limited lookahead policy avoids erroneous

optimal policies by approximating the true cost-to-go function with limited number of future

time steps.

The only drawback of using limited lookahead policy is that it may be slower in plume

detection, especially if the UAVs are located far away from the mutual information map. To

illustrate this more clearly, consider the situation shown in Fig. 5.3. As one can see, if initial

position of the UAV is far from mutual information map, given maximum speed of UAV and

lookahead time step l = 3, there will not be any information in range of the UAV. Hence,

the UAV does not move and proposed algorithm suggests that the UAV should stay at the

same position during the time.
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Figure 5.3: Schematic layout of applied UAV sensor and mutual information maps at three

consecutive times. Red square shows initial position of UAV and black circle shows its

maximum range, given maximum speed of UAV and l = 3.

This drawback can be overcome by minimizing the distance between the UAV position

and mutual information map, whenever the mutual information inside the range of UAV is

zero. In this way, the UAV will move toward the mutual information map, even if mutual

information map is out of range of UAV in l time step. This can be mathematically described

as the following:
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If
∑k+1+l

i=k+1 I(Θi, zi|F (svi−1, u
v
i−1)) = 0, then

J̃k+1(svk, u
v
k) =

k+1+l∑
i=k+1

d(siImax , F (svi−1, u
v
i−1)), v = 1 (5.15)

and

J̃k+1(svk, u
v
k) =

k+1+l∑
i=k+1

d(siImax , F (svi−1, u
v
i−1)) + α

v−1∑
j=1

e−[svi−sji ]
T [svi−sji ], v = 2, 3, · · · , Nu (5.16)

where,

d(siImax , F (svi−1, u
v
i−1)) = ||siImax − F (svi−1, u

v
i−1)||2 (5.17)

is the Euclidean distance between the spatial location where mutual information obtains

its maximum (denoted by siImax) and location of UAV. Using above algorithm, the UAVs

always move toward the mutual information map, independent of initial location of UAVs

or lookahead time step l. Note that this property of proposed approach guarantees faster

detection of the plume and consequently faster convergence of estimation process.

5.2.5 Simplification of Limited Lookahead Policy

Computational cost of proposed limited lookahead method can be further alleviated by

finding optimal control policies just for the spatial points within the maximum range of each

UAV. The intuition behind this idea is that since each UAV has a limited range during a

specified time, there is no need to find optimal control policies for the points outside the

range of the UAV. In this way, there is no need to minimize Eq. (5.13) and Eq. (5.14) over

the whole spatial domain. Hence, the computational cost involved in minimizing Eq. (5.13)

and Eq. (5.14) will significantly reduce. This can be easily seen in Fig. 5.3. As one can see,

the number of spatial points within the maximum range of the UAV is far less than the total

number of spatial grid points. Hence, the computational cost involved in finding optimal

policy for the points within the maximum range of the UAV will be significantly less than

the computational cost required for finding optimal policy for all spatial points.

5.3 Numerical Simulations

To validate the performance of proposed approach two different test cases are implemented.

In the first test case, dispersion/ advection of Propane is simulated over New York city. North
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American Regional Reanalysis wind data is used for simulation of dispersion phenomenon in

this case. Three sources are considered for this scenario where the amount of mass release is

assumed to be uncertain. For the second test case, a more complicated dispersion/advection

scenario is simulated. For this case, dispersion of Chlorine is simulated over the city of

Denver. A three dimensional wind field, accessed from North American Regional Reanalysis

data base is used to perform the simulation. Also, a continuous mass release is considered

where its location and amount of mass release are uncertain. SCIPUFF numerical model

is used to simulate dispersion/advection in all these test cases. Also, a discretized chemical

sensor is utilized to perform the task of data observation for all the examples. In the following,

we first explain the sensor model in detail and then the description of each example is given.

5.3.1 Sensor Model

The sensor used for the measurements is a bar sensor with discrete numbers of bars used

in [80], with slight differences. The number of bars ranges from zero to fifteen. These

bar readings indicate the concentration magnitude at the sensor location at the instant;

the sensor displays z = 0, · · · , 15, bars when the internal continuous-valued concentration

magnitude xint is between thresholds Tz and Tz+1, where 0 ≤ Tz < Tz+1. The thresholds Tz’s

are defined on a logarithmic scale, i.e. Tz ∈ {0, 5×10−14, 10−13, 5×10−13, 10−12, · · · , 5×10−7}.
Properties of the sensor are determined by these thresholds and the properties of xint,

which is assumed to be normally distributed about the true concentration x [80]. Mea-

surement error v = xint - x may be considered a combination of multiplicative noise and

additive noise with mean zero and standard deviation
√
R(x) = σ(x) = ax + b where a is

the proportionality constant and b accounts for the thermal motion of the electrons in the

components [80]. In practice, because the true value of x is never known, σ(x) is usually

approximated by σ(x̃), where x̃ is an estimate of x. a is equal to 1 and b = 10−15 in our

simulations. Also, it is assumed that x̃ = Tz, where Tz is the sensor bar corresponding to

xint. Probability density function of xint given the corresponding concentration x is:

p(xint|x) = N (xint; x, R) =
1√
2πR

e−
(xint−x)2

2R (5.18)

where, N (, ; ., .) denotes a Gaussian probability density function with the mean and variance

specified by its second and third arguments. Strictly speaking, p(xint|x) is not a Gaussian

distribution because it is only defined for non-negative values of xint. Following Eq. (5.18),
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likelihood function, or simply probability of z conditioned on x, is determined by the following

integral:

P (z|x) ∝
∫ Tz+1

Tz

p(xint|x)dxint,
∑
z

P (z|x) = 1 (5.19)

As mentioned before, sensor readings are polluted with some error, due to internal random

variable and quantization effect. It is clear that when the number of thresholds goes to

infinity and the length of intervals between two thresholds goes to zero, the sensor output

becomes continuous and the likelihood function reduces to the (truncated) Gaussian distribu-

tion defined by Eq. (5.18). When the uncertainty due to internal random variable vanishes,

likelihood function is flat over the interval [Tz, Tz+1] associated with z and zero elsewhere.

Note that due to discretization involved in sensor output, the mutual information in

Eq. (5.5) will be written as:

I(Θ; z) =
Nz∑
z=0

M∑
q=1

wqΓ(Tz+1, Tz,Θ(ξq), R) ln (Γ(Tz+1, Tz,Θ(ξq), R))−

Nz∑
z=0

(
M∑
q=1

wqΓ(Tz+1, Tz,Θ(ξq), R)

)
ln

(
M∑
q=1

wqΓ(Tz+1, Tz,Θ(ξq), R)

)

where,

Γ(Tz+1, Tz,Θ(ξq), R) =
1

2

{
erf

(
Tz+1 − x(Θ)√

2R

)
− erf

(
Tz − x(Θ)√

2R

)}
and Nz = 15. Note that quadrature scheme is used to evaluate the integrals in I(Θ; z).

5.3.2 UAV model

The UAVs are modeled by the following discrete equations
s1

s2

s3

λ


k+1

=


s1

s2

s3

λ


k

+


ulonk cos(λk +

πuλk
2

)

ulatk sin(λk +
πuλk

2
)

50uzk
πuλk

2

 (5.20)

where (s1, s2, s3)k is (lat, lon, z) coordinate of each UAV on spatial domain and λk represents

heading angle of the UAV at time tk. Control input of each UAV is composed of four different

signals, i.e.

Uk = [ulonk , ulatk , u
z
k, u

λ
k ]
T (5.21)
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In above equation, ulonk , ulatk , and uzk determine displacement of UAV in longitude, latitude,

and vertical directions, respectively; and uλk determines heading angle for the UAV. In this

article, for simplicity we assumed that ulatk = ulonk ≡ uhk. Hence, our simplified model will be

written as:
s1

s2

s3

λ


k+1

=


s1

s2

s3

λ


k

+


uhk cos(λk +

πuλk
2

)

uhk sin(λk +
πuλk

2
)

50uzk
πuλk

2

 , Uk = [uhk, u
z
k, u

λ
k ]
T (5.22)

Note that depending on dynamic of the problem, each of the elements of Uk can take different

values. For instance, it is assumed that uλk can take one of the following discrete values:

uλk =



−1, move toward south

0, move toward east

1, move toward north

2, move toward west

3, ss+1 = sk

(5.23)

As mentioned in Eq. (5.23), different values of uλk determine the direction of the UAV at

each time step tk. In this manuscript, it is always assumed that all elements of control signal

Uk take discrete values. Other control signals (uhk and uzk) are described separately for each

example.

5.3.3 Test case 1

In this case the dispersion/advection of propane is simulated over New York area. The

domain of interest and the applied wind field (at one specific time) are shown in Fig. 5.4.

Simulation time is considered to be 24 hrs. starting from 00 : 00 of September 1st, 2013.

North American Regional Reanalysis wind data at pressure level 100 kpa (height ' 100 m.)

is used as the windfield for simulation. Three instantaneous mass releases are considered

where their location is known and the only uncertain parameters are their amount of mass

release. It is assumed that releases happen at the same time, i.e. all source releases happen at

00 : 00 of September 1st. All mass releases are assumed to be uniformly distributed between
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100 kg and 300 kg. Fig. 5.4 illustrates source locations and the windfield (at t = 0 hrs.)

over the two dimensional spatial domain.
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Figure 5.4: Schematic layout of Propane release over New York region, source locations are

shown with purple circles, the wind-field (at t = 0 hr and pressure level = 100 kPa) is shown

over the two dimensional domain with blue vector field. Position of stationary sensors (initial

positions of UAVs) are shown with square markers. Geographical location of different cities

can be seen on the background map

A set of 59 CUT8 quadrature points are used to quantify the uncertainty involved in

concentration of dispersal material. Also, a 6th order gPC expansion is used to reconstruct

distribution of parameters after each update. Simulation of dispersion/advection has been

performed using SCIPUFF numerical model, where concentration of propane is recorded

every 10 mins.

Performance of the DDM approach is verified by comparing data assimilation results

obtained by mobile and stationary sensors. Three sensors are used for data observation and

a limited lookahead policy with l = 6 is used for finding location of each mobile sensor

during the time. Note that uhk ∈ {2, 4, 6} km. and uzk = 2 in our simulations. Also, uλk

is given in Eq. (5.23). Hence, optimal way-points of mobile sensors are found by changing

control variables uhk and uλk . We considered α = 5 and W = diag([1, 1, 0]) in our simulation.

Fig. 5.3.3 illustrates positions of UAVs during the time over the spatial domain. It can be
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observed from Fig. 5.3.3 that the UAVs follow the plume during the time and end up to the

locations where the mutual information map obtains its maximum.
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Figure 5.5: Test Case 1: Obtained way-points for mobile sensors at different time steps,

contour map and corresponding colorbar represent the information map at the final time

(tf = 24 hr). The windfield at t = 24 hr (pressure level = 100 kpa) and geographical map

of the region are shown in the background.

Convergence behavior for mean estimate of source parameters using stationary sensors,

along with the minimum and maximum range of estimation are shown in Fig. 5.6. Fig. 5.6

illustrates that using stationary sensors results in poor estimates of the parameters. This is

due to the inefficient placement of sensors during data assimilation process.

Convergence behavior for mean estimate of source parameters using mobile sensors are

also illustrated in Fig. 5.6 where the DDM approach results in significantly better convergence

for mean estimates of the parameters. Also, estimation process is very confident about the

source parameters estimates.

Table 5.1 shows the amount of information I(Θ; z) collected by each sensor while using

stationary and mobile sensors. It is clear from Table 5.1 that using Dynamic Data Monitoring

method significantly increases the amount of mutual information collected by each sensor

during the data assimilation process, and consequently improves the convergence behavior

of the estimation process.
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(a) convergence of m1 using stationary sensors
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(b) convergence of m1 using mobile sensors
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(c) convergence of m2 using stationary sensors
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(d) convergence of m2 using mobile sensors
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(e) convergence of m3 using stationary sensors
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(f) convergence of m3 using mobile sensors

Figure 5.6: Test Case 1: Source parameter estimates during the time obtained using sta-

tionary and mobile sensors
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Table 5.1: Test Case 1: Information collected by each sensor while with and without using

Dynamic Data Monitoring approach.

sensor number collected information

Stationary Dynamic

sensor 1 1.8743 8.2208

sensor 2 1.4219 6.8420

sensor 3 1.4009 7.1927

Comparison with chemotaxis strategy

To further illustrate performance of proposed methodology, we have utilized chemotaxis

strategy (i.e. moving UAVs along gradient of concentration field) to estimate uncertain

source parameters. The same structure for mobile sensors is used while implementing chemo-

taxis strategy. Obtained way-points for mobile sensors can be seen in Fig. 5.3.3.

Fig. 5.8 illustrate convergence for mean estimate of source parameters using chemotaxis

algorithm. As expected, using chemotaxis method results in better convergence comparing

with stationary sensors, but its performance is not as good as DDM approach and obtained

estimates for source parameters are not as confident as those of DDM method.

To highlight performance of proposed DDM approach, one can compare convergence be-

havior for parameter estimates obtained by DDM approach with convergence behavior of

source parameter estimates using 25 stationary sensors, shown in Fig. 3.6. Comparison of

Fig. 5.6 with Fig. 3.6 clearly shows that using DDM approach with just 3 mobile sensors

results in much faster convergence for mean estimate of source parameters with respect to

the case of using 25 well located stationary sensors. Hence, using Dynamic Data Monitoring

method expedites convergence of estimation approach while using smaller number of data

observation sensors. This can also be seen by comparing overall Root Mean Square Error

(RMSE) between mean estimates of source parameters and their actual values while using

different sensor networks and different methods. It is clear from Table 5.2 that proposed

DDM algorithm outperforms all the other methods / sensor networks and DDM approach

results in least amount of RMSE comparing to other sensor networks and chemotaxis al-
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Figure 5.7: Test Case 1: Obtained way-points for mobile sensors at different time steps using

Chemotaxis strategy. Contour map represents the mean estimate of concentration field at

the final time (tf = 24 hr). The wind field at t = 24 hr (pressure level = 100 kpa) and

geographical map of the region are shown in the background.
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Figure 5.8: Test Case 1: Source parameter estimates during the time, obtained using Chemo-

taxis strategy

gorithm and using DDM approach with just 3 sensors results in lower value of RMSE in

parameter estimates, comparing with other sensor networks. Hence, proposed DDM method

provides more accurate estimates while using less number of data observation sensors.
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Table 5.2: Test Case 1: Root Mean Square Error (RMSE) between mean estimate of source

parameters and their actual values while using different sensor networks and different meth-

ods.

sensor network/method RMSE

m1 m2 m3

3 stationary sensors 46.27 21.18 38.67

25 stationary sensors 14.49 19.42 33.86

3 mobile sensors / chemotaxis 16.11 11.97 14.32

3 mobile sensors / DDM 1.93 5.74 12.19

5.3.4 Test Case 2

For the last example, we considered dispersion/advection of Chlorine over a three dimensional

spatial domain. Simulation time is considered to be 10 hrs. starting from 12 : 00 of June 6th,

2012. Three dimensional North American Regional Reanalysis wind data is used as applied

windfield for simulation. Also, a 33× 46× 20 grid points were used to perform simulations

over the spatial domain. In our simulation, height variation is between 0 and 1000 m and a

discretization of 50 m in vertical direction is performed to consider the effect of the windfield

at different heights. Fig. 5.9 illustrates the source locations and the applied windfield (at

height = 100 m. and t = 12 : 00 of June 6th) over the two dimensional spatial domain.

Uncertain source parameters are assumed to be source location (lonsrc, latsrc, zsrc) and

mass release rate of chlorine (msrc). Source location is assumed to be uniformly distributed

over the region (lon, lat, z) ∈ [−103.8,−103.5]×[39.45, 39.65]×[300, 400] m. The mass release

rate of chlorine is considered to be uniformly distributed between 6 kg/min and 10 kg/min

and total release time is 1 hr. Actual source location is equal to (lonsrc, latsrc, zscr) =

(−103.73, 39.49, 386.4 m). Projection of actual source location over lon− lat plane is shown

with a red circle in Fig. 5.9. The actual amount of mass release rate for chlorine is also

assumed to be 8.11 kg/min. Table 5.3 illustrates uncertain parameters and their actual

value for Test Case 2.

A set of 161 CUT8 quadrature points are used to quantify the uncertainty involved in

99



Reza Madankan Optimal Information Collection

−105 −104.5 −104 −103.5 −103
39

39.2

39.4

39.6

39.8

40

40.2

40.4

40.6

40.8

41

lon

la
t

Greeley

North Sterling 
State Park

Fort
Morgan

Denver

Figure 5.9: Schematic layout of Chlorine release over Denver region, source locations are

shown with red circle, the applied wind-field (at initial time and pressure level = 100 kPa)

is shown over the two dimensional domain with blue vector field. Black rectangle shows

uncertain source location. Position of stationary sensors (initial positions of UAVs) are

shown with squares. Geographical location of different cities can be seen on the background

map

concentration of pollutant material and a 6th order gPC expansion was used to reconstruct

distribution of parameters after each measurement update. Concentration of chlorine is

recorded every 10 mins. Performance of DDM approach is verified by comparing data as-

similation results obtained by mobile and stationary sensors. Four sensors are used for data

observation and a limited lookahead policy with l = 2 is used for finding location of each

mobile sensor during the time. Note that uhk ∈ {5, 10} km., uzk ∈ {2, · · · , 15} in our sim-

ulations, and uλk is given in Eq. (5.23). Also, α = 5 and W = diag([5, 5, 0.01]). Fig. 5.10

illustrates positions of UAVs during the time over the lon− lat domain. Fig. 5.10 shows that

the UAVs follow the plume during the time and end up to the locations where the mutual

information map obtains its maximum.

Convergence behavior for mean estimate of source parameters using stationary sensors,

along with the minimum and maximum range of estimation are shown in Fig. 5.11. As one

can see, using stationary sensors results in poor estimates of the parameters which is due to
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Table 5.3: Test Case 2: Uncertain parameters and their actual value

Parameter Distribution/Range Actual value

lonsrc Uniform ∈ [−103.8,−103.5] -103.73

latsrc Uniform ∈ [39.55, 39.77] 39.58

zsrc Uniform ∈ [300, 400] m. 386.4 m

msrc Uniform ∈ [4, 10] kg/min 8.11 kg/min

the ineffective placement of sensors.

Convergence behavior for mean estimate of source parameters using mobile sensors are

illustrated in Fig. 5.12. It can be observed that the DDM approach results in significantly

better estimates of the parameters and estimation process is very confident about the source

parameters estimates.

Table 5.4 shows the amount of information I(Θ; z) collected by each sensor while using

stationary and mobile sensors. From Table 5.4 it can be concluded that the Dynamic Data

Monitoring method significantly increases the amount of mutual information collected by

each sensor during the data assimilation process, and consequently improves the convergence

behavior of estimation process.

Table 5.4: Test Case 2: Information collected by each sensor while with and without using

Dynamic Data Monitoring approach.

sensor number collected information

Stationary Dynamic

sensor 1 0 19.2996

sensor 2 0 20.0772

sensor 3 0 21.6315

sensor 4 3.6754 22.1826
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Figure 5.10: Test Case 2: Obtained way-points for mobile sensors at different time steps (a)

UAV#1, (b) UAV#2, (c) UAV#3, and (d) UAV#4. Geographical map of the region are

shown in the background.

5.4 Summary

In this chapter, we developed a general framework for optimal allocation of data observation

sensors to ensure better performance of source characterization approach while source char-

acterization of plume release incidents. The key idea of the presented method is to optimally
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Figure 5.11: Test Case 2: Source parameter estimates during the time, obtained using

stationary sensors

locate data monitoring sensors such that the mutual information between model predictions

and data measurements is maximized thereby giving a better reduction in uncertainty. The

main advantage of this approach is that it significantly increases the accuracy of the estima-

tion algorithm, while using fewer number of data observation sensors. The limited lookahead

dynamic programming approach is well suited for the current problem as it is capable of in-

corporating or assimilating the updated information of wind data and measurements and

thus provides robust UAV trajectories to collect better measurements. Mutual collisions

and measurement redundancy are avoided by constantly maintaining a sufficient separation
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Figure 5.12: Test Case 2: Source parameter estimates during the time, obtained using mobile

sensors

between UAVs at all times. The numerical simulations validate the proposed methodology

where the mobile sensors, when optimally planned to make measurements at specific lo-

cations and specific time instances, provide better estimates that significantly outperform

the estimates from stationary sensors. One should note that the proposed dynamic data

monitoring method can be applied to other types of data assimilation problems, especially

in large scale systems with Hidden Markov Models or even black-box models with minor

modifications.

The major computational effort in using Optimal Information Trajectory Design ap-
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proach lies in propagation of new set of quadrature points after updating source parameter

distributions. The computational effort required for propagating these quadrature points

varies depending on the set of quadrature points and number of uncertain source parame-

ters. Hence, using an efficient and accurate set of quadrature points can significantly reduce

the computational complexities involved in whole process. As mentioned in Chapter 2, we

have used a new quadrature scheme, named as CUT points, to alleviate the issue of compu-

tational complexities involved in propagation of new set of quadrature points. Besides using

efficient CUT points, one can use parallel computing techniques to propagate the new set of

quadrature points in considerably shorter time. This can be easily done due to the fact that

each of the quadrature points can be propagated through the model, independent from the

other.

The other source of computational complexity lies in the calculation of mutual informa-

tion and the implementation of Dynamic Programming method for finding control policies

to optimally position the UAVs. Note that the computational effort required to evaluate

the mutual information is independent of the number of UAVs. However, depending on the

number of UAVs the required time for computation of optimal policy increases linearly.

Finally, it should be noted that in absence of parallel computing, the computational

time required for evaluation of mutual information and finding optimal policies of UAVs are

negligible in comparison with the computational effort needed for propagation of quadrature

points. Hence, DDM approach can be implemented in almost real time by using parallel

computing techniques in propagation of new set of quadrature points.
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Chapter 6

Data Assimilation in absence of

Sensor Error Characteristics

6.1 Introduction

There has been numerous researches regarding probabilistic parameter estimation of dynamic

systems [4, 5, 125, 126], given some measurement data. In all these approaches, there is a

crucial need for knowledge of statistics of associated noise in observed data. For instance,

information of mean and variance of the noise is required in all minimum variance based

methods [125, 126]. Similarly, in Bayesian inference frameworks, distribution of noise signal

is needed to construct the likelihood function [5].

A major challenge in estimation of dynamic systems is when information regarding the

statistical properties of sensor data are not available or partially available. This frequently

happens in data assimilation of atmospheric data by using satellite imagery. This is due

to the fact that satellite imagery data can be polluted with noise, depending on weather

conditions, clouds, humidity, etc. Unfortunately, there is no accurate procedure to quantify

the error due to these factors on the output of satellite data. Hence, the use of the classical

data assimilation methods in this situation is not straight forward. One way to proceed in

this situation is to assume some statistics for the associated noise in measurement data and

perform the estimation. However, obtained estimation results may not be as accurate as

they should be in reality, depending on assumed values for noise statistics.

There exist numerous works [127–140] regarding data assimilation in absence of sensor
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error characteristics. The essence of these works is about the estimation of the noise statistics

along with model-data fusion of dynamical systems. These works can be divided into two

different categories: i) covariance estimation methods, ii) methods that estimate distribution

of the associated noise in measurement data.

The key idea of covariance estimation methods is to estimate the covariance of associated

measurement noise along with other unknown parameters. Various covariance estimation

techniques [127–137] exist in literature. Mehra [127] developed a parametric method for

estimation of the covariance matrices with zero cross-correlation. In detail, this method

reduces to estimation of diagonal elements of the covariance matrix of measurement noise.

Bagchi [128] proposed a maximum likelihood approach for identification of continuous linear

systems with unknown noise covariance, where covariance of the noise signal is estimated

along with other unknown parameters. Rong Li et al. [129] developed a recursive multiple

model approach for noise identification of dynamical systems in presence of non-stationary

noise. Oussalah et al. [130] developed an adaptive Kalman filter to estimate associated covari-

ance matrices of the noise signals for linear time invariant dynamical systems. Marginalized

Particle Filter [141] technique is also used in [131–133] for estimation of associated covari-

ance matrices of present disturbances for nonlinear dynamical systems. Odelson et al. [134]

and Rajamani et al. [135] developed autocovariance least-square based methods to estimate

covariance of associated noise signals in linear time invariant dynamical systems. Sarkka et

al. [136] developed a variational Bayesian adaptive Kalman filter to estimate the covariance

matrix of associated noise signal in measurement data for linear time invariant dynamical

systems. However, developed methodology in [136] is restricted only to diagonal covariance

matrices. Cai et al. [137] used a tapering technique for estimation of covariance matrix with

non diagonal elements. In this method, a weight is assigned to each element of the matrix

and the problem of covariance estimation reduces to estimation of these weights during the

time.

One should note that most of the aforementioned works, other than [129, 131–133] , are

restricted to linear time invariant dynamical systems. Also, most of the above techniques

assume the associated noise signal to be Gaussian, which could be a restrictive assumption

for some practical applications. In addition, all of them only concentrate on estimating

covariance matrix of associated noise signal, while knowing only covariance of the noise

signal may not be enough. One should also consider that all the current approaches for
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covariance estimation of noise signal increase computational complexity of the whole model-

data fusion process due to the introduction of new uncertain parameters that need to be

estimated.

Besides covariance estimation technique, there exist few recent works [138,140] that focus

on estimation of the probability density function of the existing noise signal in measurement

data. Jaoua et al. [138] utilized Dirichlet process mixture to develop an online estimation

framework for estimation of state and unknown measurement noise density in nonlinear

dynamic state-space models. Ozkan et al. [140] developed an online Bayesian estimation for

the measurement noise density of a given state space model using particle filter and Dirichlet

process mixture. Note that in spite of most of the covariance estimation methods, all the

density estimation methods are applicable to nonlinear time varying dynamical systems. In

addition, they don’t consider any restrictive assumption regarding distribution of the noise

signal. However, similar to covariance estimation techniques, density estimation methods

significantly increase the computational complexity involved in the whole model-data fusion

process by introducing new uncertain parameters that need to be estimated.

The key contribution of this chapter is to develop a new model-data fusion method, with

emphasis on large scale systems, that does not require any information regarding statistics of

the existing noise signal in measurement data. Hence, avoiding the computational complex-

ities involved in current methods for estimation of the noise signal statistics (e.g. covariance

or density function). The key idea of this paper is to not make any assumption regarding

the statistical properties of sensor data that are not available. Hence, in the absence of

statistical information of the sensor data, we maintain the higher order prior statistics but

update the posterior mean to be in compliance with sensor data.

Our Approach

The proposed approach is based on the premises that one should not make any assumption

regarding the statistical properties of sensor data which are not available. In the absence

of statistical information regarding the sensor data, we maintain the prior statistics but

update the posterior mean to be in compliance with sensor data. Another aspect of the

proposed approach is to evaluate different error metrics to compare the model output with

sensor observation. These metrics are very important specifically for spatial data integra-

tion. The method presented in this chapter consists of four different components that are
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combined together to perform the task of parameter estimation and state forecasting. These

components are i) Uncertainty Quantification, ii) Error Evaluation, iii) Optimization, and

iv) Reconstruction of Posterior Quadrature Points . Schematic view of our approach is

illustrated in Fig. 6.1. As shown in Fig. 6.1, estimation process starts with a given prior

uncertainty in parameters of dispersion/advection incident. Similar to previous chapters, the

first step to perform the estimation is to quantify the effect of uncertain source parameters

on model output. As described in Chapter 2, the method of quadrature points is used to

perform the task of uncertainty quantification and then a weighted average of propagated

quadrature points is used to determine prior statistics of model output over the time. The

method of quadrature points is described in more detail in Chapter 2.

After precise uncertainty quantification of model outputs, the next step of data assim-

ilation process involves optimizing prior weights of each quadrature points. This involves

computing the error ensembles by comparing model forecast corresponding to each quadra-

ture point with observation data. The main feature of the proposed approach is to pose the

computation of posterior weights as an iterative convex optimization problem with a guar-

anteed solution.In Section 6.4, we will explain the procedure for error evaluation in more

detail.

Obtained error ensembles and prior error statistics are then used in an convex quadratic

optimization problem to find posterior weights of the quadrature points. The intuition

behind this optimization is to minimize the expected value of the error between model

forecast ensembles and measurement data while preserving higher order statistics of error

distribution. This results in posterior values of quadrature weights which are then used

to find posterior estimate of source parameters and accurate forecasting of model output.

In Section 6.5, detailed information regarding construction of this optimization problem is

presented.

To complete the estimation procedure, a set of new quadrature points are then re-

constructed based on obtained posterior statistics of source parameters. These new set

of quadrature points are then propagated through the dynamical model and whole proce-

dure is repeated recursively for the next time steps. We will explain detailed procedure for

reconstruction of posterior quadrature points of source parameters in Section 6.6.

The structure of this chapter is as follows. First, the problem of parameter estimation

dynamical systems in absence of sensor error characteristics is formulated in Section 6.2.
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Figure 6.1: Schematic view of estimation process. Nt represents the time step. w− and w+

denote prior and posterior weights

We briefly discuss the method of quadrature points in Section 6.3. In Section 6.4, we will

discuss about the theoretical basis of evaluation of error ensembles and error statistics. Then

in Section 6.5, we construct a convex-quadratic optimization problem whose solution results

in posterior value of quadrature weights. We will propose a scheme for reconstruction of

quadrature points of source parameters in Section 6.6. We then demonstrate performance of

proposed approach by using a simple numerical example in Section 6.7. In the end, summary

of the chapter is presented in Section 6.8.
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6.2 Problem Statement

Let us consider a dynamic system, given by Eq. (2.1):

ẋ = f(t,x,Θ)

where, t is time, and x ∈ Rn×1 and Θ ∈ Rm×1 represent states and parameters of the

system, respectively. Parameter Θ is assumed to be uncertain, which is defined by some

prior distribution p(Θ), i.e. Θ ∼ p(Θ).

Also, measurement data is given using the following model:

y = h(x,Θ, ν) (6.1)

where, y ∈ Rb×1 denotes observation data, h(.) ∈ Rb×1 is the observation operator, and ν is

the associated noise. As compared to Chapter 3, we know relax the assumption regarding the

statistical properties of sensor noise, i.e., no information is available regarding the statistical

properties of ν.

Our objective is to have a reliable estimate of parameter Θ, by assimilating measurement

data with forward model.

6.3 Uncertainty Quantification

As we previously explained in Chapter 2, the first step to perform estimation process is to

quantify the uncertainty associated with forward model output during the time propagation.

Similar to previous chapters in this dissertation, the method of quadrature points is used to

perform this task, i.e. N quadrature points for parameter Θ are generated based on prior

density function, p(Θ) and Eq. (2.1) is simulated for each of these realizations. Statistics of

the model output can be evaluated according to Eq. (2.2), i.e,

E [xk] =

∫
ξ

xk(Θ, t)p(ξ)dξ '
k∑
q

wqx
N(Θ(ξq), t), k = 1, 2, · · ·

For detail description about the method of quadrature points, please see Chapter 2.
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6.4 Error Evaluation

To compare model outputs with measurement data, one needs to provide a measure to

compute the difference (error) between model outputs and the measurement data. To de-

scribe this in more detail, let us assume that the error between model predictions and given

measurement data to be given as:

e = d(M(Θ),y) (6.2)

where, error e ∈ R+, and d(M(Θ),y) ≥ 0 is a metric operator which is used to calculate the

difference between model forecastM(Θ) = h(x,Θ, 0) and observation data y. For instance,

d(M(Θ),y) can be simply defined as Frobenius norm between M(Θ) and y.

We emphasize here that applied operator d(., .) for calculation of the difference between

model forecasts M(Θ) and measurement data y should be a proper metric to measure the

difference between model forecasts and measurement data in distinguishable manner. In

general, function d : Rb × Rb −→ R+ is a metric. If given A,B,C ∈ Rb, then we have:

• d(A,B) ≥ 0

• d(A,B) = 0, if and only if A = B

• d(A,B) = d(B,A)

• d(A,C) ≤ d(A,B) + d(B,C)

A wide variety of error metrics can be used for measuring the difference between model

forecast ensembles and observation data. However, for large scale systems like atmospheric

dispersion models, which are emphases of this dissertation, we are looking for error metrics

which integrate all the information regarding the difference between model output and mea-

surement data into a scalar number. In this way, we can avoid the issue of dimensionality,

and at the same time, applied metric will be able to distinguish between each and every

model output ensembles. Different metrics can be used for this purpose [142–144]. In the

following, we describe few of these metrics.
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Hausdorff Metric

Hausdorff distance is defined as the maximum distance of a set to the nearest point in the

other set. Mathematically, Hausdorff distance from set A to set B is defined as:

h(A,B) = max
a∈A

{
min
b∈B
{dist(a, b)}

}
(6.3)

where, a and b are points of sets A and B, respectively, and dist(a, b) is any metric distance

between these points.

Similarly, Hausdorff distance from set B to set A, denoted by h(B,A), is defined as:

h(B,A) = max
b∈B

{
min
a∈A
{dist(a, b)}

}
(6.4)

Note that h(A,B) 6= h(B,A) in general. Hence, Hausdorff distance can not be used as a

metric. To overcome this drawback, a more general definition of Hausdorff distance is given

as

H(A,B) = max {h(A,B), h(B,A)} (6.5)

Note that Eq. (6.5) represents a proper metric.

To calculate H(A,B) between each model output ensemble and observational data, one

needs to perform the following procedure.

• Consider a concentration field which is a discrete function defined over a spatial domain

D of size n1 × n2 which takes the discrete values c ∈ {0, 1, · · · , G}. Note that even

though model output is continuous field over spatial domain D, this discretization can

be easily performed.

• Apply an appropriate norm to calculate dist(a, b) in Eq. (6.3) and Eq. (6.4). Even

though, different norms can be used to calculate dist(a, b) in these equations, we have

used the following equation for evaluation of dist(ai,j, bl,m) in our simulations [142]:

dist(ai,j, bl,m) = max{|i− l|
n1

,
|j −m|
n2

,
|ai,j − bl,m|

G
} (6.6)

where, ai,j ∈ A is value of concentration field A at spatial grid point (i, j). Similarly,

bl,m ∈ B is value of concentration field B at spatial grid point (l,m). Also, n1 and n2

are the number of grid points in spatial domain D. Note that ai,j, bl,m ∈ {0, 1, · · · , G}.

The major benefit of using Eq. (6.6) is that given Eq. (6.6) for d(a, b), Hausdorff metric

will be always normalized, i.e. H(A,B) ∈ [0, 1].
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• Use Eq. (6.3) to Eq. (6.5) to find H(A,B).

Fig. 6.2 shows Hausdorff distance for two samples of model outputs over observational

data. As Fig. 6.2(a) represents, model output and observational data are very close to each

other, whenever H(A,B) is small. On the other hand, by increasing H(A,B), the difference

between model output and observational data increases. This can be seen in Fig. 6.2(b).

Note that n1 = n2 = 101 and G = 20 in our simulations.
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Figure 6.2: Comparison of different samples of the model outputs and observation data at a

given time (a) two images are very close and correspondingly H is small (H=0.05) (b) two

images are different from each other and correspondingly H is large (H=0.49)

It should be mentioned that Hausdorff metric can be used to quantify the error between

model output ensembles and observation data. Hence, Eq. (6.5) can be used instead of

Eq. (6.2), i.e.

e(Θq) = H(M(Θq),y), q = 1, 2, · · · , N

where, M(Θq) = h(x,Θq,0) is the model forecast concentration field spread over spatial

domain D, which is generated by atmospheric model based on qth realization of uncertain

parameter Θ. As well, y is the observed concentration field, provided by Eq. (6.1). Notice

that observed concentration field y can be noisy in general.
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Euclidean Distance

Given two image A and B, Euclidean metric is defined as:

dE(A,B) =

√∑
i,j

(ai,j − bi,j)2 (7.15)

where, ai,j and bi,j are the intensity of images A and B, respectively, at grid point (i, j). For

more information regarding Euclidean distance, please see [144].

6.4.1 Error Statistics

One can find statistics of the error, after computing the difference between model forecast

ensembles and measurement data. Note that there will be N realizations for error, given

N quadrature points for model parameter Θ. Statistics of error can be defined using these

quadrature values. For instance, expected value of each element of error e ∈ R+ can be

written as:

m1 =
N∑
q=1

w−q ek(Θq) (6.7)

where, w−q is the corresponding weight for Θq which is qth quadrature value of parameter Θ,

and m1 denotes expected value of error e ∈ R+, i.e. m1 = E [e].

Similarly, higher order central moments for error e can be defined as:

mk =
N∑
q=1

w−q (ek(Θq)−m1)k , k = 2, 3, · · · , Nm (6.8)

where, Nm ∈ N is the highest order of central moments calculated.

6.5 Source Parameter Estimation

The key idea of source parameter estimation is to find posterior values of quadrature weights

wq,s to minimize expected value of error, denoted by E [e], while preserving its higher order

central moments. This can be mathematically defined as the following:

min
w
E [e] = min

w

N∑
q=1

wqe(Θq) (6.9)
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subject to

N∑
q=1

wq

e(Θq)−
N∑
q=1

wqe(Θq)︸ ︷︷ ︸
m1


k

= mk, 2 ≤ k ≤ Nm (6.10)

N∑
q=1

wq = 1, 0 ≤ wq ≤ 1 (6.11)

where, w = [w1, w2, · · · , wN ]T . Note that Eq. (6.9) is an ill-posed optimization problem and

minimizing only E [e], given Eq. (6.10) and Eq. (6.11) has infinite solution. To surpass this

issue, one can add a penalty term to Eq. (6.9) to minimize the difference between prior and

posterior weights, and at the same time to minimize E [e]. In this way, modified optimization

problem can be written as:

min
w

λ1E [e] + λ2|w −w−|2 = min
w
λ1

N∑
q=1

wqe(Θq)︸ ︷︷ ︸
m1

+λ2

N∑
q=1

(wq − w−q )2 (6.12)

subject to

N∑
q=1

wq


b∏

j=1

e(Θq)−
N∑
q=1

wqe(Θq)︸ ︷︷ ︸
m1


nk
 = mk, 2 ≤ k ≤ Nm (6.13)

N∑
q=1

wq = 1, 0 ≤ wq ≤ 1 (6.14)

where, m1 is the expected value vector of error e obtained by Eq. (6.7), λ1, λ2 > 0 are given

constants, and w− = [w−1 , w
−
2 , · · · , w−N ]T is prior values of quadrature weights. Coefficients

λ1 and λ2 represent the relative weights to the two terms in the cost function. Intuitively,

when λ2 � λ1 Eq. (6.12) focuses on minimizing E [e], rather than the difference of w and

w−. On the other hand, when λ1 � λ2, Eq. (6.12) returns the same values of w− for w.

It should be mentioned that proposed approach minimizes the expected value of the dif-

ference between model forecasts and measurement data while preserving higher order central

moments of error. Schematic view of this process is illustrated in Fig. 6.3. As illustrated

in this figure, proposed optimization problem minimizes expected value of the error while
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preserving shape of error distribution, i.e. higher order statistics of error distribution.The

intuition behind preserving higher order central moments of error is to account for possible

inaccuracies of the measurement data.
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Figure 6.3: Schematic view of convex optimization method used for finding posterior quadra-

ture weights. As illustrated, proposed optimization problem minimizes expected value of the

error while preserving shape of error distribution, i.e. higher order statistics of error distri-

bution. Prior and posterior values of expected value of error ensembles are also shown in

the figure.

Convex Quadratic Optimization

Eq. (6.12), along with Eq. (6.13) and Eq. (6.14) is a nonlinear optimization problem, due

to presence of equality constraints for higher order central moments. In the following, we

utilize an iterative approach to transfer this nonlinear optimization problem into a convex

quadratic optimization problem, which is much easier to solve. This has been achieved by

making use of the bisection method.

Let us assume that the value of m1 is known, then the nonlinear optimization problem

is converted to the following quadratic optimization problem.

min
w
|w −w−|2 =

N∑
q=1

(wq − w−q )2 (6.15)
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subject to

N∑
q=1

wq (e(Θq)−m1)k = mk, 2 ≤ k ≤ Nm (6.16)

N∑
q=1

wqe(Θq) = m1 (6.17)

N∑
q=1

wq = 1 (6.18)

0 ≤ wq ≤ 1 (6.19)

One can combine Eq. (6.17) and Eq. (6.18) to further simplify above optimization prob-

lem. This results in the following optimization problem:

min
w
|w −w−|2 =

N∑
q=1

(wq − w−q )2 (6.20)

subject to

N∑
q=1

wq (e(Θq)−m1)k = mk, 2 ≤ k ≤ Nm (6.21)

N∑
q=2

wq (e(Θq)− e(Θ1)) = m1 − e(Θ1) (6.22)

0 ≤ wq ≤ 1 (6.23)

As one can see, Eq. (6.20) along Eq. (6.21) to Eq. (6.23) is a quadratic optimization

problem which can be solved much easier than the original optimization problem of Eq. (6.12)

to Eq. (6.14). We can iteratively solve resulted quadratic optimization problem for different

value of m1 to minimize the original optimization problem. This can be achieved with the

help of the bisection method. In detail, we first assume lower bound and upper bound of m1

to be zero and prior mean,
∑N

q=1w
−
q e(Θq), respectively. Then, we assign m1 to be average

of considered lower and upper bounds and solve the resulted quadratic convex optimization

problem in Eq. (6.20)-Eq. (6.23). If the optimization was not successful, then we substitute

m1 with the new value which is given from bisection method. This process is repeated

iteratively, until convergence of bisection method is ensured. Applied pseudo-code for this

procedure is described in the following:
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Iterative algorithm for minimizing Eq. (6.15) subject to Eq. (6.16) to Eq. (6.19)

assign upper bound (ub) of m1 to be expected value of error, i.e. ub =
∑N

q=1w
−
q e(Θq)

assign lower bound (lb) of m1 to be zero.

while (ub− lb) ≥ threshold

m1 = 0.5 ∗ (ub + lb);

Perform quadratic optimization to solve Eq. (6.20) to Eq. (6.23)

if optimization is feasible

ub = m1;

else

lb = m1;

end

end

Routine quadratic optimization methods like quadprog in Matlab or CVX optimization

toolbox [145] can be used to perform quadratic optimization.

One may say that proposed iterative bisection algorithm doesn’t provide the smallest

value of m1. In the following, we will prove a theorem which declares that the value of m1

given by above bisection algorithm is the smallest possible value of m1 and optimization

problem given by Eq. (6.20) to Eq. (6.23) is infeasible for any smaller value of m1. But

before that, we will prove the following two lemmas which help us in proof of mentioned

theorem.

Lemma 6.5.1. Assume that for a given value of m1, denoted by m0
1 (e.g. the value of

m1 given by prior mean of error) and for a given value of 2 ≤ k = k∗ ≤ Nm, there exist

0 ≤ wq ≤ 1 such that Eq. (6.21) holds, i.e.

∃ 0 ≤ wq ≤ 1 such that
N∑
q=1

wq(e(Θq)−m0
1)k

∗
= mk∗ (6.24)

If for any given value of m1 = mc
1 < m0

1

N∑
q=1

wq(e(Θq)−mc
1)k

∗ 6= mk∗ , ∀ 0 ≤ wq ≤ 1 (6.25)
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then, for all m1 ≤ mc
1, we have

N∑
q=1

wq(e(Θq)−m1)k
∗ 6= mk∗ , ∀ 0 ≤ wq ≤ 1 (6.26)

Proof. The proof is composed of two steps. First we show that if for a given k∗ and mc
1 < m0

1

N∑
q=1

wq(e(Θq)−mc
1)k

∗ 6= mk∗ , ∀ 0 ≤ wq ≤ 1

then
N∑
q=1

wq(e(Θq)−mc
1)k

∗
> mk∗ , ∀ 0 ≤ wq ≤ 1

This can be easily proved by contradiction. Assume that for all 0 ≤ wq ≤ 1

N∑
q=1

wq(e(Θq)−mc
1)k

∗
< mk∗

On the other hand, we know that mc
1 < m0

1. Hence, we will have:

N∑
q=1

wq(e(Θq)−mc
1)k

∗
< mk∗ , ∀ 0 ≤ wq ≤ 1

(e(Θq)−m0
1) < (e(Θq)−mc

1), ∀ 1 ≤ q ≤ N

⇒ (6.27)

N∑
q=1

wq(e(Θq)−m0
1)k

∗
< mk∗ , ∀ 0 ≤ wq ≤ 1

which is in contradiction with Eq. (6.24). Thus,

∀ mc
1 < m0

1 and 0 ≤ wq ≤ 1,
N∑
q=1

wq(e(Θq)−mc
1)k

∗
> mk∗ (6.28)

In the next step, we just need to prove that

N∑
q=1

wq(e(Θq)−m1)k
∗ 6= mk∗ , ∀ 0 ≤ wq ≤ 1, ∀ m1 < mc

1 (6.29)

This can be easily proved by making use of the fact that m1 < mc
1 and Eq. (6.28):

∀ mc
1 < m0

1 and 0 ≤ wq ≤ 1,
N∑
q=1

wq(e(Θq)−mc
1)k

∗
> mk∗ ,

m1<mc1====⇒
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∀ m1 < mc
1 and 0 ≤ wq ≤ 1,

N∑
q=1

wq(e(Θq)−m1)k
∗
> mk∗

Hence,

∀ m1 < mc
1 and 0 ≤ wq ≤ 1,

N∑
q=1

wq(e(Θq)−mc
1)k

∗ 6= mk∗

This completes the proof for lemma 1.

Lemma 6.5.2. Assume that for a given value of m1, denoted by m0
1 (e.g. the value of m1

given by prior mean of error), there exist 0 ≤ wq ≤ 1 such that Eq. (6.22) holds, i.e.

∃ 0 ≤ wq ≤ 1 such that
N∑
q=2

wq (e(Θq)− e(Θ1)) = m0
1 − e(Θ1) (6.30)

If for a given value of m1 = mc
1 < m0

1

N∑
q=2

wq(e(Θq)− e(Θ1)) 6= mc
1 − e(Θ1), ∀ 0 ≤ wq ≤ 1 (6.31)

then, ∀ m1 ≤ mc
1, we have

N∑
q=2

wq(e(Θq)− e(Θ1)) 6= m1 − e(Θ1), ∀ 0 ≤ wq ≤ 1 (6.32)

Proof. The proof is very similar to the proof for lemma 1. First we show that if for a mc
1 < m0

1

N∑
q=2

wq (e(Θq)− e(Θ1)) 6= mc
1 − e(Θ1), ∀0 ≤ wq ≤ 1

then
N∑
q=2

wq (e(Θq)− e(Θ1)) > mc
1 − e(Θ1), ∀0 ≤ wq ≤ 1

This can be easily proved by contradiction. Assume that for all 0 ≤ wq ≤ 1

N∑
q=2

wq (e(Θq)− e(Θ1)) < mc
1 − e(Θ1)

On the other hand, we know that mc
1 < m0

1. Hence, we will have:

∀ 0 ≤ wq ≤ 1,
N∑
q=2

wq (e(Θq)− e(Θ1)) < m0
1 − e(Θ1)
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which is in contradiction with Eq. (6.30). Thus,

∀ mc
1 < m0

1 and 0 ≤ wq ≤ 1,
N∑
q=2

wq (e(Θq)− e(Θ1)) > mc
1 − e(Θ1) (6.33)

In the next step, we just need to prove that

N∑
q=2

wq (e(Θq)− e(Θ1)) 6= m1 − e(Θ1) ∀ 0 ≤ wq ≤ 1, ∀ m1 < mc
1 (6.34)

This can be easily proved by making use of the fact that m1 < mc
1 and Eq. (6.33):

∀ mc
1 < m0

1 and 0 ≤ wq ≤ 1,
N∑
q=2

wq (e(Θq)− e(Θ1)) > mc
1 − e(Θ1),

m1<mc1====⇒

∀ m1 < mc
1 and 0 ≤ wq ≤ 1,

N∑
q=2

wq (e(Θq)− e(Θ1)) > m1 − e(Θ1)

Hence,

∀ m1 < mc
1 and 0 ≤ wq ≤ 1,

N∑
q=2

wq (e(Θq)− e(Θ1)) 6= m1 − e(Θ1)

This completes the proof for lemma 2.

Theorem 6.5.3. Assume that for a given value of m1 = mc
1, there exists no solution for

optimization problem defined by Eq. (6.20) to Eq. (6.23). Then the optimization problem

defined by Eq. (6.20) to Eq. (6.23) doesn’t have any solution for any values of m1 < mc
1.

Proof. We use lemma 1 and lemma 2 to prove this theorem. Assume there exists no solution

for the optimization problem, then either one of Eq. (6.21) and Eq. (6.22) is violated.

If Eq. (6.21) is violated, then as we proved in lemma 1, Eq. (6.21) is violated for all values

of m1 < mc
1.

On the other hand, if Eq. (6.22) is violated, then as we proved in lemma 2, Eq. (6.22) is

violated for all values of m1 < mc
1.

Hence, if the optimization problem defined by Eq. (6.20) to Eq. (6.23) returns an infeasible

solution for a given value of m1 = mc
1, then it also returns an infeasible solution for any value

of m1 < mc
1.
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6.5.1 Posterior Statistics of Parameter Θ and State x

After finding posterior values of quadrature weights, one can use these weights to evaluate

posterior statistics of Θ.

m+
k (Θ) =

N∑
i=1

w+
i

(
m∏
j=1

Θ
nj
ij

)
,

m∑
j=1

nj = k, k = 1, 2, · · · (6.35)

where, m+
k (Θ) denotes kth order posterior moment of parameter Θ and Θij is jth element of

ith quadrature of vector Θ.

One should note that similar procedure can be used for state estimation, i.e. obtained

posterior weights can be used to estimate posterior statistics of state after each update.

m+
k (x) =

N∑
i=1

w+
i

(
n∏
j=1

x
nj
ij

)
,

m∑
j=1

nj = k, k = 1, 2, · · · (6.36)

6.6 Reconstruction of Quadrature Points

The major drawback of proposed approach for data assimilation lies in possible degeneracy

of weights after few time steps. In other words, most of the weights reduces to zero after few

measurement updates and proposed data assimilation can result in a erroneous estimate.

To surpass this problem, a resampling approach is considered to update the weights and

model forecast after each measurement update. Hence, after each measurement update,

new quadrature points are reconstructed based on obtained posterior statistics from data

assimilation. Numerical model is then simulated to reproduce model forecasts using these

new quadrature points.

One can use sophisticated approximation methods like Maximum Entropy Principle [124],

Polynomial Chaos surrogate model, etc, for reconstruction new quadrature points. In here,

we have used a simple approximation technique which approximates posterior pdf with a

uniform pdf. Note that mean and covariance of approximated uniform pdf are equal to pos-

terior statistics, obtained from data assimilation. New quadrature points are then generated

based on this approximated uniform pdf.
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6.7 A Simple Example

To verify the performance of the proposed approach, we consider the dispersion of Propane

over Manhattan island, similar to the Test Case 1 in 5.3.3. The domain of interest and

applied wind field (at one specific time) are shown in Fig. 6.4. Simulation time is considered

to be 10 hrs. starting from 00 : 00 of September 1st, 2013. North American Regional

Reanalysis wind data at pressure level 100 kpa (height ' 100 m.) is used as the windfield for

simulation. Four instantaneous mass releases are considered where their locations are known

and the only uncertain parameters are their amount of mass release. It is assumed that

releases happen at the same time, i.e. all source releases happen at 00 : 00 of September 1st.

All mass releases are assumed to be uniformly distributed between 50 kg and 150 kg. Fig. 6.4

illustrates source locations and the windfield (at t = 0 hrs.) over the two dimensional spatial

domain. A set of 161 CUT8 quadrature points are used to quantify the uncertainty involved

in concentration of propane. Simulation of dispersion/advection has been performed using

SCIPUFF numerical model, where concentration of propane is recorded every 30 mins.

We assumed that measurement data is available every 30 mins., starting from 02 : 00 of

September 1st. A random realization of mass [m1,m2,m3,m4] = [66.2, 137.04, 83.8, 122.1]T kg.

was used for simulation of dispersion phenomena. Then, obtained concentration field was

discretized and polluted with a uniformly distributed integer random field ω(lon, lat, t) to

generate the measurement data. The magnitude of ω at each spatio-temporal location is

between −5 and +5, i.e. ω(lon, lat, t) ∈ {−5,−4, · · · ,+5}. We use the Hausdorff metric

and Euclidean distance to calculate the error between model predictions and measurement

data. Note that corresponding discretization has been made in model prediction outputs

before calculation of Hausdorff metric between each model output and measurement data.

We have performed resampling after each weight update. In other words, we generate a

new set of quadrature points after each weight update, based on the procedure we explained

in Section 6.6. In addition, Nm = 3 in our simulations.

Fig. 6.5 and Fig. 6.6 represent statistics (mean and variance) of parameter estimates

using Hausdorff metric and Euclidean distance. From Fig. 6.5 it is clear that mean estimate

of source parameters converge to their actual value and they show similar convergence be-

havior irrespective of the use of the metrics. However, Fig. 6.6 shows that the significant

difference exist between variance of source parameters as computed with the application
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Figure 6.4: Schematic layout of Propane release over New York region, source locations are

shown with purple circles, the wind-field (at t = 0 hr and pressure level = 100 kPa) is shown

over the two dimensional domain with blue vector field. Geographical location of different

cities can be seen on the background map

of HD and Euclidian metrics. In other words, using Hausdorff metric consistently results

in greater variance for source parameter estimates, as compared to the Euclidean distance.

This behavior can be easily understood by considering Eq. (6.5). As Eq. (6.5) shows, Haus-

dorff metric is constructed based on highly nonlinear operators (minimum and maximum).

Hence, it is possible that two very close image have large value of Hausdorff distance. On

the other hand, Euclidean distance is a smooth function of difference between model forecast

and observational data and small changes in either of these images results in small changes in

the value of Euclidean distance. Consequently, these inherent properties of applied metrics

effects statistics of source parameter estimates and result in completely different statistics

for the variance of source parameters.

To summarize, both Hausdorff metric and Euclidean distance result in similar values for

mean estimate of source parameters. But obtained estimates using the Euclidean distance

are much more confident (almost a point estimate in final time) than obtained estimates
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Figure 6.5: Mean estimate of source parameters during the time. Hausdorff (HD) and

Euclidean (Euc) metrics are used for evaluation of the error between model forecasts and

observation data. Dashed black lines correspond with actual value of parameters.

using the Hausdorff metric.

We have also shown posterior weights and corresponding Hausdorff and Euclidean dis-

tance in Fig. 6.7 and Fig. 6.8, respectively. As one can see, most of the posterior weights are

zero when in the case of the Euclidean distance. On the other hand, the use of the Hausdorff

metric results in non-zero values for most of the posterior weights. This is due the fact that

Hausdorff metric returns similar values for most of model forecast ensembles, as Fig. 6.7(b),

Fig. 6.7(d), and Fig. 6.7(f) shows. In other words, Hausdorff metric is less discriminatory in

comparison with the Euclidean distance.
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Figure 6.6: Variance of source parameter estimates during the time. Hausdorff (HD) and

Euclidean (Euc) metrics are used for evaluation of error between model forecasts and obser-

vation data.
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Figure 6.7: Hausdorff distance and corresponding posterior weights at different times a)

weights at t = 2 hrs., b) Hausdorff distance at t = 2 hrs., c) weights at t = 6 hrs.,

d) Hausdorff distance at t = 6 hrs., e) weights at t = 10 hrs., e) Hausdorff distance at

t = 10 hrs.,
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(d) Euclidean distance, t = 6 hrs.
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Figure 6.8: Euclidean distance and corresponding posterior weights at different times a)

weights at t = 2 hrs., b) Euclidean distance at t = 2 hrs., c) weights at t = 6 hrs.,

d) Euclidean distance at t = 6 hrs., e) weights at t = 10 hrs., e) Euclidean distance at

t = 10 hrs.,
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Forecast of Concentration Field

The quality of the source parameter estimates can be verified by performing a single deter-

ministic run of SCIPUFF numerical model corresponding to the estimated posterior mean

of source parameters and comparing it against observation data. Fig. 6.9 illustrates the fore-

cast of concentration field at t = 9 : 00 hrs. after release, obtained using source parameter

estimates at t = 8 : 30.
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Figure 6.9: Forecast of concentration field at t = 9 : 00 hrs. using posterior mean estimate

of source parameters at t = 8 : 30 while using a) Hausdorff metric, b) Euclidean metric

In addition, the discrepancy between forecast and true concentration field is also shown in

Fig. 6.10, where correspondence between forecast and true concentration field is indisputable.

Similarly, Fig. 6.11 shows forecast of concentration field at t = 9 : 30, which is obtained

using source parameter estimates at t = 9 : 00 and Fig. 6.12 represents the discrepancy

between forecast and true concentration fields. These results clearly indicate that the forecast

of concentration field based on the source parameter estimates matches very well with the

true concentration field.

To further study performance of our methodology in forecasting concentration field, we

have compared the discrepancy between forecast and true concentration fields in Table 6.1

and Table 6.2. We have also shown prior error in these Tables, where prior error denotes

the discrepancy between forecast concentration field, obtained using prior mean estimates

of source parameters, and true concentration field. Note that corresponding error metric
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Figure 6.10: Discrepancy between forecast concentration field at t = 9 : 00 hrs. (obtained

using posterior mean estimate of source parameters at t = 8 : 30) and true concentration

field while using a) Hausdorff metric, b) Euclidean metric
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Figure 6.11: Forecast of concentration field at t = 9 : 30 using posterior mean estimate of

source parameters at t = 9 : 00 hrs. while using a) Hausdorff metric, b) Euclidean metric
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Figure 6.12: Discrepancy between forecast concentration field at t = 9 : 30 (obtained using

posterior mean estimate of source parameters at t = 9 : 00 hrs.) and true concentration field

while using a) Hausdorff metric, b) Euclidean metric

Table 6.1: Comparison of the error between forecast and true concentration fields, obtained

using Euclidean distance at different times.

Prior Error eEuclidean

t = 9 hrs. 1141 69

t = 9 : 30 hrs. 1079 67

is used for each of the methods to evaluate the discrepancy between model forecast and

true concentration field. In other words, Euclidean distance is used to find the discrepancy

between model forecasts and true concentration field in Table 6.1. Similarly, Hausdorff

metric is used to find the difference between model forecasts and true concentration field

in Table 6.2. As Table 6.1 and Table 6.2 represent, the error of model forecast,obtained

by posterior mean estimate of parameters, is always less than the error of model forecast

obtained by prior mean estimate of source parameters. As well, associated error in model

forecast reduces with time.
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Table 6.2: Comparison of the error between forecast and true concentration fields, obtained

using Hausdorff metric at different times.

Prior Error eHD

t = 9 hrs. 0.04 0.02

t = 9 : 30 hrs. 0.04 0.02

Comparison with Minimum Variance Estimation

To compare the performance of the proposed methodology, we have also shown performance

of the minimum variance estimation framework. Note that in the minimum variance frame-

work, we need to assume some value for the covariance of associated noise in measurement

data. Fig. 6.13 illustrates mean of source parameter estimates while using our proposed

method and the minimum variance framework. Same measurement data is used in both

methods. We have shown simulation results for the minimum variance framework while con-

sidering four different values for covariance of associated noise in measurement data. As one

can see, performance of the minimum variance framework crucially depends on the value

of covariance matrix R. For instance, when value of R is underestimated, the minimum

variance framework results in inaccurate estimates of parameters. On the other hand, over-

estimation of the covariance matrix, R leads to less confident estimates of source parameters,

as it can be seen in Fig. 6.14.

To summarize, Table 6.3 shows the Root Mean Square Error (RMSE) between actual

values of source parameters and their estimates, obtained by the proposed approach and the

minimum variance framework. Comparison of RMSE for the minimum variance estimation

method shows that whenever statistics of the noise is accurately known, the minimum vari-

ance framework results in very reliable results with minimal error. But whenever inaccurate

estimation of noise statistics is used, the minimum variance framework results in poor per-

formance. Note that this reduction of performance is much sharper when the covariance of

the noise is underestimated. On the other hand, comparing the RMSE of proposed approach

with the minimum variance framework shows that its performance is comparable with per-

formance of the minimum variance framework at its best performance, while it doesn’t make

use of any information regarding statistics of associated noise in measurement data.
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Figure 6.13: Comparison of mean estimate of source parameters using proposed method and

minimum variance framework. Assumed values of the covariance matrix R are shown for

each minimum variance simulation. Note that our proposed approach doesn’t make use of

noise statistics. a) m1 b) m2 c) m3, and d) m4
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Figure 6.14: Comparison of variance of source parameter estimates using proposed method

and minimum variance framework a) m1 b) m2 c) m3, and d) m4
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Table 6.3: Overall RMSE between mean estimate of the source parameters and their actual

parameters, obtained by proposed approach and the minimum variance framework.

Method RMSE

proposed approach (using Hausdorff metric) 3.1715

proposed approach (using Euclidean distance) 2.4510

minimum variance framework (R = ±1%) 8.5793

minimum variance framework (R = ±5%) 3.5670

minimum variance framework (R = ±10%) 2.2483

minimum variance framework (R = ±20%) 3.7781
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6.8 Summary

In this Chapter, we have developed a novel probabilistic approach for accurate parameter

estimation and forecasting of large scale systems in the absence of any knowledge regarding

the sensor error characteristics. The key idea of this approach is to minimize the expected

value of error between model forecast and measurement data while preserving higher order

prior or model forecasted central moments of error distribution. In this way, the proposed

method tries to minimize the expected value of the difference between model forecasts and

measurement data, while preserving the spread of model forecasts to account for possible

inaccuracies of measurement data. We have also presented an iterative approach to convert

the original nonlinear optimization problem involved in this process to a convex quadratic

optimization problem, which is much easier to solve and computationally affordable.

We have demonstrated performance of the proposed approach for source parameter es-

timation and forecasting of an atmospheric release incident over New York region, using

different error metrics like Hausdorff or Euclidean methods. Clearly, one can perform more

comprehensive studies regarding the effect of different error metrics like Template Match-

ing [143], Earth Mover’s Distance [146], etc, on convergence behavior of proposed approach.

Once again, we emphasize that despite conventional estimation methods, like minimum

variance framework or Bayesian Inference method, suggested approach doesn’t require any

information regarding statistics of associated noise in measurement data, which makes it a

very powerful tool for applications where no accurate information regarding associated noise

in measurement data is available.
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Chapter 7

Conclusion

The overall goal of this dissertation is to provide an end-to-end computational probabilistic

framework for uncertainty quantification, forecasting, and parameter estimation of large

scale systems, with emphasis on atmospheric release incidents. Our approach consists of

three different components. Uncertainty Quantification, Optimal Information Collection,

and Data Fusion are three different components which come together to perform the task

of source characterization and forecasting. We explained mathematical details for each of

these components in different chapters.

In Chapter 2, we presented mathematical details of the method of quadrature points that

is used for uncertainty quantification of dynamical systems in presence of parametric/initial

condition uncertainty. Even though, the method of quadrature points can be utilized us-

ing any quadrature scheme, we applied a recently developed conjugate unscented transform

quadrature points method which expedites the computations involved in uncertainty quan-

tification. We also utilized an algorithm based on polynomial chaos surrogate model to

approximate probabilistic hazard map of model output. Finally, we demonstrated perfor-

mance and accuracy of presented methodology in this chapter by some real world examples.

In Chapter 3, we utilized two probabilistic estimation frameworks for parameter estima-

tion of large scale systems. These two methods include the minimum variance framework

and the Bayesian Inference based method. These methods provide posterior statistics of

parameters, given model forecast information and available measurement data. As discussed

in Section 3.6, each of these methods are applicable to different types of problems with dif-

ferent restrictions. The minimum variance framework is applicable to the problems where
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the observation operator is an affine function of associated measurement noise and it only

provides posterior estimate of the first two moments of uncertain parameters. Also, the

information regarding the first two moments of associated measurement noise is required for

the minimum variance method.

On the other hand, observation operator in the applied Bayesian Inference method can be

any function of associated noise in measurement data, despite minimum variance framework.

Also, against the minimum variance framework, Bayesian Inference method can be used

to estimate higher order posterior statistics of uncertain parameters by tuning the order

of required moments while using Eq. (3.22). However, the complete information of the

likelihood function (equivalently complete information regarding distribution of associated

noise in the measurement) is needed to implement the Bayesian Inference method.

We also made use of a polynomial chaos surrogate model in Chapter 3 to approximate the

posterior distribution of uncertain parameters based on the obtained posterior moments from

estimation algorithms. Finally, we demonstrated performance of the proposed estimation

methods for source parameter estimation of atmospheric release incidents by some numerical

examples.

In Chapter 5, we developed a general framework for optimal information collection in

order to ensure performance of developed estimation methods. The key idea of the proposed

approach is to optimally locate mobile sensors over spatial locations such that the mutual

information between model forecast and observation data is maximized. This leads to an

optimization problem which is solved by making use of the principle of optimality and dy-

namic programming to optimally locate mobile sensors at each time step. Note that solution

of original optimization problem is computationally intractable and we made use of simplifi-

cation techniques like limited lookahead method to alleviate the computational cost involved

optimization problem. We showed performance of the proposed framework by simulation of

some realistic atmospheric release incidents.

Finally in Chapter 6, we developed a novel approach to account for source characterization

and forecasting of large scale systems in absence of sensor error characteristics. The key idea

of the proposed method is to minimize the expected value of error between the model forecasts

and measurement data while preserving higher order central moments of error distribution.

In this way, proposed approach minimizes the expected value of the difference between model

forecasts and measurement data, while preserving the spread of model forecasts to account for
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possible inaccuracies of measurement data. We demonstrated performance of the proposed

method for source parameter estimation and forecasting of a simulated atmospheric release

incident. The key strength of the proposed method is that unlike conventional probabilistic

estimation methods, like minimum variance framework or Bayesian Inference method, it

doesn’t require any information regarding statistics of associated noise in measurement data,

which makes it a very powerful tool for applications where no accurate information regarding

associated noise in measurement data is available.

Future Work

Even though we studied different aspects of the problem of source parameter estimation of

large scale systems, still there exists many challenging issues that can be studied in order

to expedite, reinforce, and generalize the developed methods. In the following, we briefly

describe few of these open problems.

Uncertainty Quantification in Presence of Model Input Uncertainty

Developing new and efficient methods for uncertainty quantification of atmospheric models

in presence of model input uncertainties is one of these challenging issues which still needs to

be studied. In this dissertation, we didn’t consider any model input uncertainties like applied

wind-fields, while there can be a considerable source of uncertainty in applied wind-fields,

depending on accuracy and resolution of utilized sensors for recording wind data. Hence,

studying atmospheric models in presence of parametric and model input uncertainties will

improve and generalize the methodology developed in this dissertation.

Shape Preserving Statistics

In this dissertation, we made use of conventional methods for calculating statistics of the

model outputs while implementing estimation methods, which may degrade accuracy of

estimation methods. In most of atmospheric release incidents all model output ensembles

have similar characteristics, while obtained expected value of model output ensembles doesn’t

preserve these tributes. To explain this in more detail, assume two different model ensembles,

as shown in Fig. 7.1(a). As one can see, both these model ensembles are similar in shape, but

their spatial location is different. Conventional expected value of these ensembles is shown
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Figure 7.1: a) Two different model ensembles which are similar in shape, but differ from

each other in spatial domain, b) Conventional expected value of model ensembles

in Fig. 7.1(b). As one can see, expected value of model ensembles doesn’t preserve the shape

of each ensemble and results in a bimodal shape which is completely different from original

ensembles and consequently may effect performance of estimation and forecasting.

To avoid this drawback, one can perform estimation and forecasting by using shape

preserving statistics. In this way, obtained expected value preserves the characteristics of

model ensembles. Fig. 7 illustrates shape preserving expected value of model ensembles.

Optimal Path Planning

We developed a general framework in Chapter 5 to find the optimal way-points for mobile

sensors to improve the performance of estimation method. Given optimal way-points, one

needs to design the optimal path for mobile sensors which we didn’t investigate in this

dissertation. Various methods [147–149] have been proposed for optimal path planning of

UAVs which can be combined with the proposed optimal information collection method to

improve its applicability to realistic experiments.
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Figure 7.2: Shape preserving expected value of model ensembles (shown in Fig. 7.1(a))

Enhancement of Developed Approach for Data Assimilation in Absence of Sensor

Error Characteristics

In Chapter 6, we have developed a novel method which provides us a statistical tool for

source parameter estimation and forecasting of large scale systems without the use of any

information regarding statistics of associated noise in measurement data. As we showed

applied metric in evaluation of the error between model forecast ensembles and measurement

data highly influences performance of estimation process. Hence, a comprehensive study

regarding performance of the proposed method in presence of different available metrics is

highly important. In addition, performance of the proposed approach under different values

of Nm is another open area of research which can be investigated in more detail.
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