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Abstract—
A convex optimization based approach is presented to per-

form model-data assimilation of spatial temporal dynamical
systems where sensor error characteristics are not available.
The key idea of the proposed technique is that one should not
make any assumption regarding the statistical properties of
sensor data when they are not available. Recently developed
quadrature scheme, Conjugate Unscented Transformation
in conjunction with convex optimization tools is used to
obtain an approximation of posterior density function. The
proposed approach is validated by considering the problem of
source parameter estimation for toxic material release in the
atmosphere. The numerical experiments provides a basis for
optimism for the robustness of the proposed methodology.

I. INTRODUCTION

A major challenge in estimation of dynamic systems is
when information regarding the statistical properties of sen-
sor data is not available or partially available. This frequently
happens in data assimilation of atmospheric data by using
satellite imagery. This is due to the fact that satellite imagery
data can be polluted with noise, depending on weather
conditions, clouds, humidity, etc. Unfortunately, there is no
accurate procedure to quantify the error due to these factors
on the output of satellite data. Hence, use of the classical data
assimilation methods in this situation is not straight forward.

There exist numerous efforts [1]–[13] regarding data as-
similation in absence of sensor error characteristics. The
essence of these works is about the estimation of the noise
statistics along with model-data fusion of dynamical systems.
These works can be divided into two different categories:
i) covariance estimation methods, ii) methods that estimate
distribution of the associated noise in measurement data.

The key idea of covariance estimation methods is to esti-
mate the covariance of associated measurement noise along
with other unknown parameters [1]–[10] . Note that most of
the these techniques assume the associated noise signal to be
Gaussian, which could be a restrictive assumption for some
practical applications. In addition, they only concentrate
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on estimating covariance matrix of associated noise signal,
while knowing only covariance of the noise signal may not
be enough. One should also consider that all the current
approaches for covariance estimation of noise signal increase
computational complexity of the whole model-data fusion
process due to the introduction of new uncertain parameters.

Besides covariance estimation technique, there exist few
recent efforts [11], [13] that focus on estimation of the
probability density function (pdf) of the existing noise signal
in observations. Note that in spite of most of the covariance
estimation methods, all the density estimation methods are
applicable to nonlinear time varying dynamical systems.
In addition, they don’t consider any restrictive assumption
regarding distribution of the noise signal. However, simi-
lar to covariance estimation techniques, density estimation
methods significantly increase the computational complexity
involved in the whole model-data fusion process by intro-
ducing new uncertain parameters that need to be estimated.

Our Approach: The key contribution of this article is
to develop a new model-data fusion method, that does not
require any information regarding statistics of the existing
noise signal in measurement data. Hence, avoiding the com-
putational complexities involved in current methods. The key
idea of this paper is to not make any assumption regarding
the statistical properties of sensor data that are not available.
In other words, in the absence of statistical information of
the sensor data, we maintain the higher order prior statistics
but update the posterior mean to be in compliance with
sensor data. Schematic view of the proposed methodology
is shown in Fig. 1. As Fig. 1 illustrates, our approach
consists of four different components that are combined
together to perform the task of parameter estimation and
model forecasting. These components are i) Uncertainty
Quantification, ii) Error Evaluation, iii) Optimization, and
iv) Reconstruction of Posterior Quadrature Points.

The structure of this paper is as follows. First, problem
statement is described in section II. We briefly discuss the
method of quadrature points, used for uncertainty quantifica-
tion, in section III. In section IV, we will discuss about the
theoretical basis of evaluation of error ensembles and error
statistics. Then in section V, we construct a convex-quadratic
optimization problem whose solution results in posterior
value of quadrature weights. We will propose a scheme for
reconstruction of quadrature points of uncertain parameters
in section VI. Performance of the proposed approach is then
demonstrated by using a simple numerical example in section
VII. Finally, conclusion is presented in section VIII.
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Fig. 1. Schematic view of estimation process. Nt represents the time step.
w− and w+ denote prior and posterior weights

II. PROBLEM STATEMENT

Let us consider a dynamic system, given by

ẋ = f(t,x,Θ) (1)

where, t is time, and x ∈ Rn×1 and Θ ∈ Rm×1 represent
states and parameters of the system, respectively. Parameter
Θ is assumed to be uncertain, defined by some prior distri-
bution p(Θ).Also, measurement data is given as:

y = h(x,Θ, ν) (2)

where, y ∈ Rs×1 denotes observation data, h(.) is the
observation operator, and ν is the associated noise. Note that
no information is available regarding the statistical properties
of ν. Our goal is to have a reliable estimate of parameter Θ,
by assimilating measurement data with model forecasts.

III. UNCERTAINTY QUANTIFICATION

The first step to perform estimation process is to quantify
the uncertainty associated with forward model output during
the time propagation. In here, the method of quadrature
points is used to perform this task, i.e. N quadrature points
for parameter Θ are generated based on prior pdf, p(Θ) and
Eq. (1) is simulated for each of these realizations. The kth

order moment of the model output then can be evaluated as

E [xk] =

∫
ξ

xk(Θ, t)p(Θ)dΘ '
N∑
q

wqx
k(Θ(ξq), t) (3)

where, Θ(ξq)s are the quadrature points, generated based
on associated pdf of uncertain parameter Θ, and wqs are
their corresponding quadrature weights. Different types of
quadrature schemes like classical Gaussian quadrature rule
can be used to evaluate above integral. For a generic m-
dimensional integral, the tensor product of 1-dimensional

Gaussian quadrature points results in an undesirable ex-
ponential growth of the number of points. Hence, using
regular Gaussian quadrature points will be computationally
expensive in higher dimensions. In here, we have used
recently developed Conjugate Unscented Transform (CUT)
[14], to overcome this drawback of regular quadrature points.
The proposed CUT points are efficient in terms of accuracy
while integrating polynomials and yet just employ a small
fraction of the number of points used by the traditional
Gaussian quadrature scheme. For instance, only 161 CUT
quadrature points are required to satisfy the 8th order mo-
ments in 4−dimensional space, while 625 quadrature points
are needed based on Gauss-Legendre quadrature scheme.

IV. ERROR EVALUATION

After precise uncertainty quantification, in order to com-
pare model outputs with measurement data, one needs to
provide a measure to compute the difference (error) between
model outputs and the measurement data. To describe this
in more detail, let us assume the error between model
predictions and given measurement data to be given as:

e = d(M(Θ),y) (4)

where, error e ∈ R+, and d(M(Θ),y) ≥ 0 is a metric
operator that is used to calculate the difference between
model forecast M(Θ) = h(x,Θ,0) and observation data
y. A wide variety of error metrics [15]–[17] can be used for
measuring the difference between model forecast ensembles
and observation data. n the following, we describe few of
these metrics which we have used in this manuscript.

Hausdorff Metric: is defined as the maximum distance of
a set to the nearest point in the other set. Mathematically,
Hausdorff distance from set A to set B is defined as:

h(A,B) = max
a∈A

{
min
b∈B
{dist(a, b)}

}
(5)

where, a and b are points of sets A and B, respectively,
and dist(a, b) is any metric distance between these points.
Note that h(A,B) 6= h(B,A) in general. Hence, Hausdorff
distance can not be used as a metric. To overcome this
drawback, a more general definition of Hausdorff distance
is given as

H(A,B) = max {h(A,B), h(B,A)} (6)

Note Eq. (6) represents a metric and can be used to quantify
the error between model forecasts and observation, i.e.

e(Θq) = H(M(Θq),y), q = 1, 2, · · · , N

Euclidean Distance: Given two image A and B, Euclidean
metric is defined as:

dE(A,B) =

√∑
i,j

(ai,j − bi,j)2 (7)

where, ai,j and bi,j are the intensity of images A and B,
respectively, at grid point (i, j).



A. Error Statistics

Once the error between each of the model forecast en-
sembles and measurement data is calculated, one can find
its statistics as a weighted average of error ensembles. Note
that given N quadrature points for model parameter Θ, there
will be N realizations for the error. Statistics of the error
can be defined using these quadrature values. For instance,
expected value of the error e ∈ R+ can be written as:

m1 = E [e] =

N∑
q=1

w−q ek(Θq) (8)

where, w−q is the corresponding weight for Θq which is
qth quadrature value of parameter Θ. Similarly, higher order
central moments of error e are defined as:

mk =

N∑
q=1

w−q (ek(Θq)−m1)
k
, k = 2, 3, · · · , Nm (9)

where, Nm ∈ N is the highest order of central moments
calculated.

V. SOURCE PARAMETER ESTIMATION

The key idea of parameter estimation is to find posterior
values of quadrature weights wqs to minimize the expected
value of the error, denoted by E [e], while preserving its
higher order central moments. This can be formulated as:

min
w
E [e] = min

w

N∑
q=1

wqe(Θq) (10)

subject to

N∑
q=1

wq

e(Θq)−
N∑
q=1

wqe(Θq)︸ ︷︷ ︸
m1


k

= mk, 2 ≤ k ≤ Nm (11)

N∑
q=1

wq = 1, 0 ≤ wq ≤ 1 (12)

where, w = [w1, w2, · · · , wN ]T . Note that Eq. (10) is an ill-
posed optimization problem and minimizing only E [e], given
Eq. (11) and Eq. (12) has infinite solution. To overcome
this, one can add a penalty term to Eq. (10) to minimize the
difference between prior and posterior weights, along with
minimizing E [e]. In this way, modified optimization problem
can be written as:

min
w

λ1E [e] + λ2|w −w−|2 =

min
w
λ1

N∑
q=1

wqe(Θq)︸ ︷︷ ︸
m1

+λ2

N∑
q=1

(wq − w−q )2 (13)

subject to

N∑
q=1

wq

e(Θq)−
N∑
q=1

wqe(Θq)︸ ︷︷ ︸
m1


nk

= mk (14)

N∑
q=1

wq = 1, 0 ≤ wq ≤ 1 (15)

where, 2 ≤ k ≤ Nm and m1 is given by Eq. (8), λ1, λ2 > 0
are given constants, and w− denotes prior value of quadra-
ture weights. Coefficients λ1 and λ2 represent the relative
weights to the two terms in the cost function. Intuitively,
when λ2 � λ1 Eq. (13) focuses on minimizing E [e], rather
than the difference of w and w−. On the other hand, when
λ1 � λ2, Eq. (13) returns the same values of w− for w.

As one can see, proposed approach minimizes the expected
value of the difference between model forecasts and measure-
ment data while preserving higher order central moments of
error. Schematic view of this process is illustrated in Fig. 2.
As illustrated, proposed technique minimizes expected value
of the error while preserving shape of the error distribution,
i.e. higher order statistics of error distribution. The intuition
behind preserving higher order central moments of the error
is to account for possible inaccuracies of measurement data.
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Fig. 2. Schematic view of the proposed optimization method for finding
the posterior quadrature weights. As illustrated, proposed method minimizes
expected value of the error while preserving the shape of error distribution,
i.e. higher order statistics of error. Prior (E−[e]) and posterior (E+[e])
expected value of error ensembles are also shown.

Convex Quadratic Optimization: Eq. (13), along with
Eq. (14) and Eq. (15) is a nonlinear optimization problem due
to presence of equality constraints for higher order central
moments. One can utilize an iterative approach to transfer
this nonlinear optimization problem into a convex quadratic
optimization problem, which is easier to solve. This has been
achieved by making use of the bisection method. In detail, let
us assume that the value of m1 is known, then the nonlinear
optimization problem is converted to the following quadratic
optimization problem.

min
w
|w −w−|2 =

N∑
q=1

(wq − w−q )2 (16)



subject to
N∑
q=1

wq (e(Θq)−m1)
k

= mk, 2 ≤ k ≤ Nm (17)

N∑
q=2

wq (e(Θq)− e(Θ1)) = m1 − e(Θ1) (18)

0 ≤ wq ≤ 1 (19)

As one can see, Eq. (16) along Eq. (17) to Eq. (19)
is a quadratic optimization problem which can be solved
much easier than the original optimization problem described
by Eq. (13) to Eq. (15). One can iteratively solve resulted
quadratic optimization problem for different values of m1

to minimize the original optimization problem. This can be
achieved with the help of bisection method. In detail, we first
assume lower bound and upper bound of m1 to be zero and
prior mean,

∑N
q=1 w

−
q e(Θq), respectively. Then, we assign

m1 to be the average of considered lower and upper bounds
and solve the quadratic convex optimization problem in
Eq. (16)-Eq. (19). If the optimization was not successful, then
we substitute m1 with the new value which is given from
bisection method. This process is repeated iteratively, until
convergence of bisection method is ensured. The pseudo-
code for this procedure is described in the following:

Iterative algorithm for solving Eq. (16) to Eq. (19)

assign upper bound (ub) of m1 to be the prior

expected value of error, i.e.

ub =
N∑

q=1
w−

q e(Θq)

assign lower bound (lb) of m1 to be zero.

while (ub− lb) ≥ threshold

m1 = 0.5 ∗ (ub + lb);

Perform quadratic optimization to

solve Eq. (16) to Eq. (19)

if optimization is feasible

ub = m1;

else

lb = m1;

end

end

The following theorems ensure that the obtained value for
m1 by the above convex optimization is in fact the smallest
possible value of m1 that can be found by solving the original
optimization problem defined by Eq. (13) to Eq. (15).

Theorem 1: Assume that for a given value of m1 = mc
1,

there exists no solution for the optimization problem defined
by Eq. (16) to Eq. (19). Then the optimization problem
defined by Eq. (16) to Eq. (19) doesn’t have any solution
for any values of m1 < mc

1.

Theorem 2: For a given value of m1 = mc
1 and

∀ 0 ≤ wq ≤ 1, the optimization problem defined by Eq. (13)
to Eq. (15) returns an infeasible solution if and only if the
optimization problem defined by Eq. (16) to Eq. (19) returns
an infeasible solution for m1 = mc

1 and ∀ 0 ≤ wq ≤ 1.

We refer the reader to [18] for detailed proof of aforemen-
tioned theorems.

A. Posterior Statistics of Parameter Θ and State x

After finding posterior values of quadrature weights, one
can use these weights to evaluate posterior statistics of Θ.

m+
k (Θ) =

N∑
i=1

w+
i

 m∏
j=1

Θ
nj

ij

 ,

m∑
j=1

nj = k, (20)

where, m+
k (Θ) denotes kth order posterior moment of

parameter Θ and Θij is jth element of ith quadrature
realization of vector Θ. Similar procedure can be used for
finding posterior statistics of model output, i.e.

m+
k (x) =

N∑
i=1

w+
i

 n∏
j=1

x
nj

ij

 ,

m∑
j=1

nj = k (21)

VI. RECONSTRUCTION OF QUADRATURE POINTS

The major drawback of proposed approach for data assim-
ilation lies in possible degeneracy of weights after few time
steps. In other words, most of the weights reduces to zero
after few measurement updates and the proposed method
can result in a erroneous estimate. To surpass this issue,
a resampling approach is considered to update the weights
and model forecast after each measurement update. Hence,
after each measurement update, new quadrature points are
reconstructed based on obtained posterior statistics from data
assimilation. Numerical model is then simulated to reproduce
model forecasts using these new quadrature points.

In here, we have used a simple approximation technique
that approximates the posterior pdf of uncertain parameter
Θ with a uniform pdf. Note that the mean and covariance
of approximated uniform pdf are equal to posterior statistics
obtained from data assimilation. New quadrature points are
then generated based on this approximated uniform pdf.

VII. NUMERICAL SIMULATIONS

To verify performance of the proposed approach, we
consider the dispersion of Propane over Manhattan island.
The domain of interest and applied wind field (at one specific
time) are shown in Fig. 3. Simulation time is considered to
be 10 hrs. starting from 00 : 00 of September 1st, 2013.
North American Regional Reanalysis wind data at pressure
level 100 kpa (height ' 100 m.) is used as the wind-
field for simulation. Four instantaneous mass releases, as
shown in Fig. 3, are considered where their locations are
known and the only uncertain parameters are their amount
of mass release. It is assumed that releases happen at the
same time, i.e. all source releases happen at 00 : 00 of
September 1st. All mass releases are assumed to be uni-
formly distributed between 50 kg and 150 kg. A set of 161
CUT8 quadrature points (i.e. satisfying upto the 8th order
moments) are used to quantify the uncertainty involved in
concentration of propane. Simulation of dispersion/advection
has been performed using SCIPUFF [19] numerical model,
where concentration of propane is recorded every 30 mins.



Measurement data is available at every 30 mins., starting
from 02 : 00 of September 1st. A random realization of
mass [m1,m2,m3,m4] = [66.2, 137.04, 83.8, 122.1]T kg.
was used for simulation of dispersion incident. Then, ob-
tained concentration field was discretized and polluted with
a uniformly distributed integer random field ω(lon, lat, t)
to generate the measurement data. The magnitude of ω at
each spatio-temporal location is between −5 and +5, i.e.
ω(lon, lat, t) ∈ {−5,−4, · · · ,+5}. Note that resampling is
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Fig. 3. Schematic layout of Propane release over New York, source
locations are shown with circle markers, the wind-field (at t = 0 hr) and
different cities can be seen in the background.

performed after each weight update, as explained in Section
VI. In addition, Nm = 3 in our simulations.

Fig. 4(a) represent statistics (mean and variance) of m2 es-
timate using Hausdorff metric (HD) and Euclidean distance.
To be concise in writing, we have only shown statistics of
parameters m2. From Fig. 4(a) it is clear that mean estimate
of m2 converges to its actual value and it shows similar
convergence behavior irrespective of the use of the metrics.
However, Fig. 4(b) shows a significant difference between
variance of m2 as computed with the application of HD
and Euclidian metrics. In particular, using Hausdorff metric
consistently results in greater variance for source parame-
ter estimates, as compared to the Euclidean metric. This
behavior can be easily understood by considering Eq. (6).
As Eq. (6) shows, Hausdorff metric is constructed based on
highly nonlinear operators (minimum and maximum). Hence,
it is possible that two very similar image have large value of
Hausdorff distance. On the other hand, Euclidean distance
is a smooth function of difference between model forecast
and observational data and small changes in either of these
images results in small changes in the value of Euclidean
distance. Consequently, these inherent properties of applied
metrics affect the statistics of source parameter estimates and
result in completely different statistics for the variance of
source parameters.

Comparison with Minimum Variance Estimation: To com-
pare the performance of the proposed methodology, we have
also shown performance of the minimum variance estimation
framework in Fig. 4. Note that in the minimum variance
framework, we need to assume some value for the covariance
of associated noise in measurement data. We have shown

TABLE I
OVERALL RMSE BETWEEN MEAN ESTIMATE OF THE SOURCE

PARAMETERS AND THEIR ACTUAL PARAMETERS, OBTAINED BY THE

PROPOSED APPROACH AND THE MINIMUM VARIANCE FRAMEWORK.

Method RMSE

proposed approach (using Hausdorff metric) 3.1715

proposed approach (using Euclidean distance) 2.4510

minimum variance framework (R = ±1%) 8.5793

minimum variance framework (R = ±5%) 3.5670

minimum variance framework (R = ±20%) 3.7781

simulation results for the minimum variance framework in
Fig. 4(a), while considering four different values for the
covariance of associated noise in measurement data. As one
can see, performance of the minimum variance framework
crucially depends on the value of covariance matrix R. For
instance, when value of R is underestimated, the minimum
variance framework results in inaccurate estimate of m2. On
the other hand, overestimation of the covariance matrix, R
leads to less confident estimate, as it can be seen in Fig. 4(b).

To summarize, Table I shows the Root Mean Square Error
(RMSE) between actual values of source parameters and
their estimates, obtained by the proposed approach and the
minimum variance framework. Comparison of RMSE for the
minimum variance estimation method shows that whenever
statistics of the noise is accurately known, the minimum
variance framework results in very reliable results with
minimal error. But whenever inaccurate estimation of noise
statistics is used, the minimum variance framework results
in poor performance. On the other hand, comparing the
RMSE of the proposed approach with the minimum variance
framework shows that its performance is comparable with
performance of the minimum variance framework at its best
performance, while it doesn’t make use of any information
regarding statistics of associated noise in measurement data.

Forecast of Concentration Field

The quality of the parameter estimates can be verified by
performing a single deterministic run of SCIPUFF numerical
model corresponding to posterior mean of parameters and
comparing the model forecast against the observation data.

The discrepancy between forecast and true concentration
fields is shown in Table II. We have also shown prior error
in this Table, where prior error denotes the discrepancy be-
tween forecast concentration field, obtained using prior mean
estimates of source parameters, and true concentration field.
Note that corresponding error metric is used for each of the
methods to evaluate the discrepancy between model forecast
and true concentration field. As Table II represents, the error
of model forecast,obtained by posterior mean estimate of
parameters, is always less than the error of model forecast
obtained by prior mean estimate of source parameters.
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Fig. 4. a) Mean estimate of parameter m2 over time using Hausdorff (HD) and Euclidean metrics. Dashed black line corresponds with actual value of
m2. b) Variance of m2 estimates over time. Mean and variance of m2 estimate using the minimum variance framework are also illustrated in both figures.

TABLE II
COMPARISON OF THE ERROR BETWEEN THE FORECAST AND TRUE

CONCENTRATION FIELDS, AT t = 9 : 30 hrs.

Prior Error Posterior Error
Euclidean 1079 67
Hausdorff 0.04 0.02

VIII. CONCLUSION

In this paper, a novel probabilistic approach is developed
for accurate parameter estimation and forecasting of large
scale systems in the absence of any knowledge regarding the
sensor error characteristics. The key idea of this approach
is to minimize the expected value of the error between
model forecasts and measurement data while preserving
higher order prior central moments of the error distribution.
Furthermore, an iterative approach is presented to convert
the original nonlinear optimization problem to a convex
quadratic optimization problem with guaranteed global op-
timal solution. The performance of the proposed approach
is demonstrated by simulation of an atmospheric release
incident over New York region.

Note that the proposed approach does not require any
information regarding statistics of measurement. Hence, it
avoids the computational and observability complexities
associated with measurement noise covariance estimation
methods. These properties make the proposed approach a
powerful tool for applications where no accurate information
regarding associated noise in measurement data is available.
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